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We present AutoTutor and Affective AutoTutor as examples of innovative 21 st century interactive
intelligent s ystems that promote learning and engagement . AutoTutor is an intelligent tutoring s ystem

that helps students compose explanations of difficult concepts in Newtonian physics, computer literacy,

and critical thinking by i nteracting with them in natural language with adaptive dialogue moves similar

to those of human tutors . Aut oTut or constructs a <cognitiveelsnhydel
analyzing the text of their typed or spoken responses to its questions. The model is used to dynamicall y
tailor the interaction toward i ndi vi dual studentsd zones of proxi mal
takes the individualized instruction and h  uman -like interactivity to a new level by automatically dete cting

and responding to student sdemotional states in addition to their cognitive states. Over 20 controlled
experiments comparing AutoTutor with ecological and experimental control s such reading a textbook have
consistently yielded learning improvements of approxi mately one letter grade after brief 30-60 minute
interaction s. Furthermore, Affective AutoTutor shows even more dramatic improvements in learning than

the original AutoTutor system, parti cularly for struggling students with low dom ain knowledge . In
addition to providing a detailed description of the implementation and evaluation of AutoTutor and

Affective AutoTutor, we also discuss new and exciting technologies  motivated by AutoTutor such as
AutoTutor -Lite, Operation ARIES, Guru Tutor , DeepTutor, MetaTutor, and AutoMentor . We conclude this
paper with our vision for future work  on interactive and engaging intelligent tutoring s ystems.
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1. INTRODUCTION

About a decade ago, the idea of a student learning difficult technical content | such as
Newtonian physics and computer operating systems, by typing or speaking to a
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computer in natural language would be considered by most to be a mere fantasy. A
computer that gauges the s t u d eleveél 8f sknowledge by asking probing questions,
analyzes t h e student &8s responses t o idehtiies eandquest i ons,
corrects misconceptions, and even responds to the st udent ds own questions, g
and comments, would also have been considered to be no more than a seductive
vision . Similarly , a decade ago, most would consider the idea that a computer could
someday sense when a student is bored or frustrated and dynamically change its
strategies to help the student conquer these negative emotions to be plainly absurd .
Therefore, the fact that a com puter system with these and many more capabilities
has, in fact, been developed is an example of progress made over the last decade . In
this paper, w e present an overview of the design, implementation, and evaluation of
two such systems called AutoTutor and Affective AutoTutor as examples of 21st
century innovation in the field of Intelligent Interactive Systems.
AutoTutor is an Intelligent Tutoring System (ITS) that helps students learn
complex technical content in Newtonian physics, computer literacy, and critical
thinking by (a) holding a conversation in natural language, (b) simulating the
pedagogical and motivational strategies of human tutors, (c) modeling students 0
cognitive states, (d) using its student mo del to dynami cally tailor the interaction to

individual student s, (e) answering studentsd quest.
misconceptions, and (g) keeping students engaged with images, a nimations, and
simulations. In addition to these capabilities, Affective A utoTutor adds affect-

sensitive capabilites by (h) detecting studentsd affective sta
features, body language, and conversational cues, (i ) regulating negative affective

states such as frustration and boredom, and (j) synthesizing em otions via the content

of its verbal responses, speech intonation, and facial expressions of an animated

pedagogical agent. Much like a gifted human tutor, AutoTutor and Affective

AutoTutor attempt to keep the student balanced between the extremes of bored om

and bewilderment by subtly modulating the pace, direction , and complexity of the

learning task .

The design of AutoTutor was inspired by explanation -based constructivist theories
of learning [Aleven and Koedinger 2002 ; Bransford et al. 1991 ; Chi et al. 1994 ; Piaget
1952; Rogoff 1990; VanLehn et al. 1992 ; Vygotsky 1978 ] and by previous empirical
research that has documented the collaborative constructive activities that routinely
occur during human tutoring [Chi et al. 2001 ; D'Mello et al. 2010a ; D'Mello et al.
2010e; Fox 1993; Graesser and Person 1994; Graesser et al. 1995; Moore 1995; Shah
et al. 2002; VanLehn et al. 2007 ]. Constructivist approaches have shaped the
standards for curriculum and instruction in the United States during the last decade.
According to this approach, students need to actively construct coherent,
explanation -based meanings and knowledge by interacting with the world and other
people. Simply put, students learn by telling and doing. Learning environments
should stimulate active construction of knowledge and provide feedback and
explanations on these constructions rather than being mere information delivery
systems. AutoTutor adheres to the se constructivist princip les because it was
designed to simulate the dialog ue moves of human tutors who coach studen ts in
constructing explanations to difficult problems.

Although the principles underlying AutoTutor strongly adhere to the cognitive
elements of constructivism, it is important to note that constructivism is not entirely
limited to cognition, discourse, action, and the environment because emotions
(affective states) are inextricably bound to the learning process [Boekaerts 2007 ;
Calvo and D'Mello 2011 ; D6 Mel | o and G;irPeleus sre rStephdhd 2012 ;
Schutz and Pekrun 2007 ]. An agile learning environment that is sensitive to a
studentd s af f e cstpriesuraablyg dénriches learning, particularly when learning is
accompanied by confusion, frustration, boredom, interest, excitement, and insight.



Therefore, in addition to modeling and responding to student s @ognitive states,
Affective AutoTutor also detects and helps regulate negative emotional states such as
boredom and frustration in order to increase engagement, task persistence, and
learning.

AutoTutor and Affective AutoTutor fill an important societal need because it is
widely acknowledged that the one -size-fits -all approach of most classrooms is not
conducive to learning at deeper levels of comprehension. Information transmission
via lecturing, which is a major classroom activity, typically fosters factual and rule -
based thinking (e.g., memorizing fact s and definitions) , but rarely facilitate s model-
based reasoning and deep thinking (e.g., problem solving, analyzing causal
relationships, making bridging inferences) . Therefore, students turn to one -on-one
human tutoring when they are having difficulty in their STEM (Science Technology
Engineering and Mathematics ) courses. One-on-one human tutoring does have a
payoff because there is considerable empirical evidence showing that human tutoring
is extremely effective when compared to typical classroom enviro nments [Bloom
1984; Cohen et al. 1982 ; Corbett 2001 ; Fletcher 2003 ]. However, the cost associated
with providing each student with a human tutor makes the adoption of widespread
tutoring programs unfeasible , and as a consequence, many students are left behind.
AutoTutor and Affective AutoTutor provide a technological solution to this problem
by simul ating the pedagogical and motivational aspects of human tutors in a scalable
and cost-effective way.

We consider AutoTutor and Affective AutoTutor to be systems that exemplif y the
innovative research in Interactive Intelligent Systems that have emerged over the
last decade for the reasons elaborated below :

AutoTutor and Affective AutoTutor  are unique because they were designed to
closely model the pedagogical styles, dialogue patterns, language, and
gestures of human tutors [Graesser et al. 1999]. They are also one of the few
ITSs that help learning by engaging the students in na tural language
dialogues that closely mirror human -human tut orial dialogues.

They are complex intelligent system s encompassing cutting -edge research in
computational linguistics, discourse processing, affective computing, machine
learning, embodied conversational agents, cognitive science, and the learning
sciences[Graesser et al. 2005].

AutoTutor has been tested on over a thousand students and produces
learning gains of approximately one letter grade. Aut oTut or s |
outperform novice human tutors and almost reach the bar of expert human
tutors [VanLehn, Graesser, Jackson, Jordan, Olney and Rose 2007 ].

Affective AutoTutor is one of the few fully -automated ITS s that detects and
respondst o student sod6 af f eitoomn {ouvheir cegnitve etates i
[D'Mello and Graesser 2010 ]. It was the first system that demonstrated the
positive effects of affect sensitivity on deep learning  [D'Mello et al. 2010d ].
These systems were designed by an interdis ciplinary research team spanning
Computer Science, Engineering , Psychology, Cognitive Science, Linguistics,
Physics, and Education. Such interdisciplinary endeavors are essential for
developing innovative artifacts ranging from entertainment to educational
games.

The AutoTutor and Affective AutoTutor research program has contributed to
both the science of how people learn as well as towards engineering solutions
to increase learn ing.

These systems have inspired a number of next -generation systems that: (a)
are scalable and can be rapidly deployed on web -based platforms (AutoTutor -
Lite), (b) help students regulate cognitive and metacognitive processes during
learning (MetaT utor), (c) process student responses at deeper levels of
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analysis (DeepTutor), (d ) implement alternate pedagogical strategies such as
reciprocal teaching and vicarious learning in gam e-based environments
(Operation ARIES), (e) provide automated mentorship during learning with
serious game-based environments (AutoMentor), and (f) model the strategies
and dialogue patterns of expert human tutors (Guru Tutor).

The remainder of the paper is organized as follows. Section 2 provides a brief
overview of the history of ITSs, discusses some of the successful ITS systems, and
summarizes recent research on the role of emotions during learning with ITSs.
Section 3 provides a sufficiently detailed (but not comprehensive) description of
AutoTutor with an emphasis on its dialogue structure, student model, interface, and
architecture. Section 4 provides a synthesis of studies on evaluations of AutoTutor
along dimensions such as conversational smoothness, ability to understand the
student, accuracy of its studen t model, and its efficacy in promoting learning gains.
While Sections 3 and 4 focus on the cognitive aspects of AutoTutor, Sections 5 and 6
describe affect-sensitive versions of AutoTutor. In Section 5, we describe how
Affective AutoTutor detects and responds to student emotions, while Section 6
evaluates the accuracy of automated affect detection and discusses experiments that
compare affective vs. non -affective versions of AutoTutor. Section 0 discusses some of
the other versions of AutoTutor that were not emphasized in this paper as well as
novel learning environments that are based on the AutoTutor technology. Finally,
Section 8 concludes the paper with a discussion on some of the issues arising from
the design of ITSs.

2. BACKGROUND AND RELATED WORK

2.1 From Computer-based Training (CBT) to Intelligent Tutoring Systems (ITSs)

The Intellige nt Tutoring Systems enterprise was launched in the late 1970s and
christened with the edited volume aptly entitled Intelligent Tutoring Systems

[Sleeman and Brown 1982 ]. The goal was to develop computerized learning

environments that had powerful intelligent algorithms that would optimally adapt to

the student and formulate computer moves that optimized learning for the individual

student s.

ITSs were viewed as a generation beyond computer -based training (CBT). A
prototypical CBT system involves mastery learning, such that the student (a) studies
material presented in a lesson, (b) gets tested with a multiple choice test or another
objective test, (c) gets feedback on the test performance, (d) re -studies the material if
the performance is below threshold, and (e) progresses to a new to pic if performance
exceedsthe threshold. The order of topics presented and tested can follow different
pedagogical models that range in complexity from ordering on prerequisites [Gagne
1985] to knowledge space models and Bayesian models that attempt to fill learning
deficits and correct misconceptions [Doignon and Falmagne 1998 ] and to other
models that allow dynamic sequencing and navigati on [O'Neil and Perez 2006]. Meta -
analyses show effect sizes of 0.39 sigma! compared to classrooms [Dodds and Fletcher
2004].

These CBT systems are an important class of learning environm ents that can
serve as tutors. However, the next generation of ITS s went a giant step further that
enhanced the adaptability, grain -size, and power of computerized learning

1 An effect-si ze measures the strength of a r el atis@rcamnmonp
measure of the effect in standard deviation units  (sigma) between two samples with means 0 and 0
and standard deviations i and i [Cohen 1992]. According to Cohen (1992) effect sizes approximately

equal to .3, .5, and .8 represent small, medium, and large effects, respectively. Q@ 0 0 j i { j¢8
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environments [Woolf 2009]. The processes of tracking knowledge (called user
modeling) and adaptively responding to the student incorporate s computational
models in artificial intelligence and cognitive science, such as production syst ems,
case-based reasoning, Bayesian networks, theorem proving, constraint satisfaction
algorithms , and educational data mining [Anderson et al. 2005; Baker and Yacef
2009; Corbett and Anderson 1994 ; Romero and Ventura 2007 ; Woolf 2009].

The ITSs that have been successfully implemented and tested have produced
learning gains with an average effect size of one sigma, which is roughly equivalent
to one letter grade [Corbett 2001 ; VanLehn, Graesser, Jackson, Jordan, Olney and
Rose 2007]. When compared to classroom instruc tion and other naturalistic controls,
the 1.0 effect sizes obtained by ITSs is superior to the 0.39 effect for computer -based
training, 0.50 for multimedia , and 0.40 effect obtained by novice human tutors
[Cohen, Kulik and Kulik 1982 ; Corbett 2001 ; Dodds and Fletcher 2004 ; Wisher and
Fletcher 2004 ]. It is , however, less than the 2 sigma effect obtained by expert tutors
for mathematics in naturalistic contexts [Bloom 1984]. The naturalistic setting is
important because ITSs and accomplished tutors have produced equivalent learning
gains when face-to-face communication is replaced with computer -mediated
communication [VanLehn, Graesser, Jackson, Jordan, Olney and Rose 2007 ]. Indeed,
ITSs are highly effective in helping students learn.

2.2 Examples of Intelligent Tutoring Systems that Monitor Cognitive States

Successful systems have been developed for mathematically well -formed topics,
including algebra, g eometry, programming languages, i.e., the Cognitive Tutors ,
[Aleven et al. 2006 ; Anderson et al. 1995 ; Corbett 2002 ; Koedinger and Corbett 2006 ],
physics such as AutoTutor , Andes, Atlas, and Why/Atla s [VanLehn, Graesser,
Jackson, Jordan, Olney and Rose 2007 ; VanLehn et al. 2005 ], electronics [Lesgold et
al. 1992], and information technology [Mitrovic et al. 2007 ].

Of particular interest is a subset of these ITSs that implement natural language
dialogue that is comparable to the conversations that occur in human tutoring. It
appears that there are two different mechanisms that potentially explain the
effectiveness of one-on-one tutoring [Corbett et al. 1999 ; Graesser, Person and
Magliano 1995]. The first is the sophisticated tutoring strategies that have been
identified in the ITS literature [Psotka et al. 1988 ; Sleeman and Brown 1982 ; Woolf
2009]. The second is the dialogue patterns and natural language that help human
tutors scaffold the student to new levels of mastery [Chi et al. 2008 ; Graesser, Person
and Magliano 1995 ]. According to Graesser et al. [1995] , there is something about
discourse and natural language (as opposed to sophisticated pedagogical strategies)
that to some extent explains the effectiveness of novice human tutors. They arrive at
this conclusion because most novic e human tutors are effective , but they use very few
(if any ) sophisticated pedagogical strategies. Perhaps a combination of sophisticated
tutoring strategies and conversational patterns will produce the ideal tutoring
system.

Some of the successful dialogue based ITSs include AutoTutor [Graesser et al.
2004; VanLehn, Graesser, Jackson, Jordan, Olney and Rose 2007 ], why-Atlas
[Graesser et al. 2001b; VanLehn et al. 2002 ], ITSPOKE [Litman and Silliman 2004 ],
CIRCSIM -Tutor [Shah, Evens, Michael and Rovick 2002 ], DC-Trains [Pon-Barry et
al. 2004], Mission Rehearsal [Swartout et al. 2006 ], Tactical Language and Culture
System [Johnson and Valente 2008 ]. These different computer tutors vary in the
extent to which they sim ulate human dialogue mechanisms, but all of them attempt
to comprehend natural language, formulate adaptive responses, and implement
pedagogical strategies to help students learn. The present focus on AutoTutor
represents an example of one dialogue -based ITS.



2.3 Beyond Cold Cognition: The Emergence of Affect-Sensitive ITSs

The late 1990s and the early 2000s witnessed an exciting infusion of ITSs that
implemented sophisticated tutoring strategies such as error identification and
correction, building on prerequi sites, frontier learning (expanding on what the
student already knows), student modeling (inferring what the student knows and
using that information to guide tutoring), building coherent explanations, and
natural language dialogues [Aleven and Koedinger 2002 ; Anderson, Douglass and
Qin 2005 ; Gertner and VanLehn 2000 ; Koedinger et al. 1997 ; Lesgold, Lajoie, Bunzo
and Eggan 1992 ; Sleeman and Brown 1982 ; Woolf 2009]. It was a round this time that
Affective Computing was beginning to emerge as a new and exciting research area.
Affective Computing focuses on creating technologies that can monitor and
appropriately respond to the affective states of the user  [Picard 1997 ; Picard 2010].
Affective computing is a subfield of human -computer interaction (HCI), where the
affective states of a user (feelings, moods, emotions) are incorporated into the
decision cycle of the interface in an attempt to develop more effe ctive, user -friendly,
and naturalistic applications.

Affective computing is particularly  relevant to ITSs because the ITSs that were
developed prior to 2000 pri mar il y focused on st wadent s & cogni
sometimes motivational levels [del Soldato and du Boulay 1995 ; du Boulay 2011 ].
This is a critical limitation because learning and problem solving are rife with
emotional experiences [Calvo and D'Mello 2011 ; D6 Me |l | o a nrd201&;rMeyers s e
and Turner 2006 ; Pekrun et al. 2010 ; Pekrun and Stephens 2012 ]. The inextricable
link between affect and learning suggests that  ITSs can be more than mere cognitive
machines, and they should be affective processors as well. Affect -sensitivity is
important for ITSs that aspire to model human tutors because it has been claimed
that expert teachers are able to recognize a stude.]
an appropriate manner that ha s a positive impact on the learning process [Goleman
1995; Lepper and Woolverton 2002 ]. An affect-sensitive ITS w ould incorporate
assessments of st udent sd cognitive and af fective states
motivational strategies in order to keep students engaged, boost  self-confidence,
heighten interest, and presumably maximize learning [Calvo and D'Mello 2011 ].

A number of research groups have recently focused on building learning
environments that detect and respond to affective states such as boredom, confusion,
frustration, and anxiety [Afzal and Robinson 2011 ; Burleson and Picard 2007 ;
Chaffar et al. 2009 ; Conati and Maclaren 2009 ; D'Mello and Graesser 2010 ; D'Mello,
Lehman, Sullins, Daigle, Combs, Vogt, Perkins and Graesser 2010d ; Forbes-Riley et
al. 2008; Robison et al. 2009; Woolf et al. 2010]. These systems use state-of-the art
sensing technologies and machine learning techniques to automatically detect
student affect by monitoring facial -features, speech contours, body language,
interaction logs, language, and peripheral physiology (e.g., electro myography,
galvanic skin response) (see [Ca |l v o a n d 20D0p fitearh dverview). These affect -
sensitive systems then alter their pedagogical and motivational strategies in a
manner that is dynamically responsive to the sensed affective states. Some of the
implemented responses to student affect include affe ct mirroring [Burleson and
Picard 2007], empathetic responses [Woolf, Arroyo, Muldner, Burleson, Cooper,
Dolan and Christopherson 2010 ], and a combination of empathy, encouragement, and
incremental challenge [D'Mello, Lehman, Sullins, Daigle, Combs, Vogt, Perkins and
Graesser 2010d]. Section 5 describes one such system, namely the affect-sensitive
AutoTutor or Affective AutoTutor .

3. AUTOTUTOR

AutoTutor simulates a human tutor by holding a ¢ onversation with students in
natural language. Students type in their contributions through a keyboard in most



applications. However, we have developed a version that handles spoken input from
the student through the Dragon Naturally Speaking E
system (See Section 7.1). AutoTutor communicates through an animated
conversational agent with speech, facial expressions, and some rudimentary gestures
(see Section 0 below).
AutoTutor has been implemented and tested for the domains of Newtonian
physics, computer literacy (the Internet, operatin g systems, and hardware), and
scientific methods (see Section O for alternate ver si ons of AutoTutor) . Aut c
tutorial sessions are typically g eared to promote conceptual thinking and deep
reasoning rather than memorization of definitions and facts. However, there is
nothing in its design to prevent AutoTutor from helping students with the acquisition
of domain -specific facts. In essence, it is p ossible to create tutorial problems that
differentially map onto taxonomies of cognitive difficulty [Bloom 1956; Wakefield
1996]. For example, there are the three levels of difficulty (easy, medium, difficult)
for Aut o T uc¢omputérditeracy problems (see[Person et al. 2003] for details).
As with most | TSs, Aut oTutorés behavior can be c¢ch
inner loop [VanLehn 2006]. The outer loop of AutoTutor consists of a seri es of
didactic lessons and challenging problems or main questions (such as why, how,
what-if)., Anexampl e main question is OWhen you turn on t
operating system first a ct i vat ed and | o a dhedorder oft lessonR AM? 6
problems, and questions can be dynamically selected based on the profile of student
abilities, but the order is fixed in most versions of AutoTutor we have developed. The
interactive dialogue occurs during the construction of an answe r to a main question
but not during the didactic delivery of i nformation (e.g., reading text, viewing a
diagram). The answer to a question (or solution to a problem) requires several
sentences of information in an ideal answer. AutoTutor assists the student in
constructing the answer after the student enters  an initial response.
The inner loop of AutoTutor consists of this collaborative interaction while
answering a question (or solving a problem). It is this inner loop that is the
distinctive hallmark of Aut oTut or . The tutor dr aws out mor e (
knowledge (through hints and prompts), helps fill in missing information, repairs
misconceptions, and answers student questions. The inner loop dialogue between
AutoTutor and the student takes approximat ely 100 dialogue turns to answer a
single challenging question, approximately the length of a conversation with a
human tutor [Graesser, Person and Magliano 1995 ].

3.1 What does AutoTutor do?

Perhaps the best way to convey what AutoTutor does in the inner loop is through an
example conversational dialogue. The excerpts below were extracted from an actual
conversation with a student on the topic of conceptual physics. The conversation
begins with a main question selected by AutoTutor.

AutoTutor : When a car without headrests on the seats is struck from behind,
the passengers often suffer neck injuries. Explain why. (main question )

Student : | don't know. (metacognitive speech act : This expression by the
student is classified as a m etacognitive speech act because it conveys what
the student knows about his/her own knowledge.)

AutoTutor : Could you at least try to give me an answer? That way, we'll have
something as a starting plac e to work from. (pump : This indirect dialogue
move encourages the student to say more, but does not direct the student to
express particular information.)



As the dialogue continues, AutoTutor detects that an important expected piece of
information is miss ing (i.e., the impact of the collision on the neck).

AutoTutor : Let's try this together. (discourse marker : This is a
discourse marker that introduces or connects dialogue moves within a turn.)

When the collision provides a large force to accelerate th e head, what could
happen to the neck? (hint : This dialogue move leads the student to articulate
a particular sentence, clause, or proposition.)

At one point in the dialogue, the student asks a question, so AutoTutor needs to
provide an answer. AutoTutor can answer some classes of questions (such as
definitional questions), but not all questions, so AutoTutor needs to productively
manage the dialogue surrounding student question asking.

Student : What is a force?

AutoTutor : Il take a crack at answering your question. (discourse
marker )

Force is any influence that tends to accelerate an object; a push or pull;
measured in newtons. Force is a vector quantity. (answer : AutoTutor answers
the studentds direct question. Anmnice r s
glossaries or a paragraph is dynamically selected from a textbook.)

Was that what you were looking for? (question solicitation . AutoTutor
allows the student the opportunity to rephrase his question.)

As the dialogue continues AutoTutor believes it has detected a misconception.

AutoTutor : See if you know the answer to this. (discourse marker
AutoTutor prepares the student for a direct question.)

When the head and body are moving at the same acceleration, they are moving
at the same Aprompt : This more direct dialogue move encourages
the student to fill in a particular word or phrase of information, in this case

t he wor dPrampta are frequently needed for students who have low
verbal fluency in order to elicit a particular noun, v erb, or adjective that is
missing in an answer.)

Student : distance

AutoTutor: Moving at the same rate. (prompt completion : AutoTutor
splices in the correct information if the student provides an incorrect answer

to its prompt. The misconception is eventu ally corrected with an assertion as
the dialogue advances.)

At this point, the dialogue continues until all of the relevant expected answers are
covered in the conversation. The conversation then ends with  a summary answer by
the tutor , or the tutor might prompt the student to construct a summary.

The example illustrates the mixed -initiative dialogue of AutoTutor. AutoTutor
attempts to interpret or otherwise handle any question, assertion, comment, or
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extraneous speech act that the student expresses. Each turn of AutoTutor requires

the generation of one or more dialogue moves that adaptively respond to what the

student expresses, that advance the conversation in a constructive manner, that

cover good answer information, or that correct misconceptions. Thet ut or 6 s di al ogue
moves within a turn are connected by discourse markers, as illustrated in the

exampl e. Some dialogue moves are responsive to the
as short feedback (positive, neutral, versus negative), answers to student quest ions,

and corrections of student misconceptions. Other dialogue moves push the dialogue

forward in an attempt to cover the expected answers to the main question.

3.2 Dialogue Structure

The dialogue structure of AutoTutor is similar to the dialogue patterns o f human
tutors. Graesser and Person analyzed dialogue patterns of typical human tutors in
middle school and in college [Graesser and Person 1994; Graesser, Person and
Magliano 1995]. Similar analyses have been conducted by other researchers on
naturalistic tutoring corpora  [Chi et al. 2004 ; D'Mello, Olney and Person 2010e ;
Evens and Mich ael 2006; Litman et al. 2006 ; VanLehn et al. 2003 ]. The following
dialogue structures are prominent in human tutors and are implemented in
AutoTutor : (a) a curriculum script wit h didactic content and problems (i.e., difficult
tasks or questions), (b) a 5 -step Tutoring Frame, (c) Expectation and Misconception
Tailored (EMT) dialogue, and (d) Conversational Turn Management.

Curriculum script . The tutor covers a curriculum with di  dactic content and a set of
guestions or problems that address the content. Didactic content can be presented in

a mini -lecture, hopefully at the appropriate time for each individual student. The
questions/problems require the student to actively apply their knowledge. The
curriculum script includes expected answers, misconceptions, hints, prompt
questions, and other inner loop information

5-Step t utorin g frame. When a challenging main question (or problem) is selected
to work on, the question is answ ered through an interaction that is structured by a5 -
Step Tutorin g Frame. The 5 steps are: (1) the tutor presents a main question, (2) the
student gives an initial answer, (3) the t utor gives short feedback on the quality of

thestudent 6s i ni t4)thetutoaand svtadent collaboratively improve on the
answer in a turn -by-turn dialogue th at may be lengthy, and (5) the tutor evaluates
whetherthest udent wunderstands (e.g., asking o0Do you und:

follow -up task). In the spirit of constructivism, t his 5-step tutoring frame involves
collaborative discussion, joint action, and encouragement for the student to construct
knowledge rather than merely receiving knowledge.

Expe ctation and misconception tailored (EMT) d ialogue . Human t utors
typically have a list of expectations (i.e. anticipated good answers or steps in a
procedure) and a list of anticipated misconceptions (incorrect information) associated
with each main question. They want the expectation content covered in order to
handle the main question that is selected. The tutor guides the student in
articulating the expectations through a number of dialogue moves, namely pumps
(0OWhat ehints e(?®\Wh a t a b 0 prampt XjUestigns to extract specific
information from students ( 0 X i s a t y,@ssertiorfs that baptturé® particular
expectations ( 0 X i s a ,andpmswesf oYé)Judent sd questions.
As the dialogue progresses, tutors tend to lead more while trying to get the
student to articulate an expectation. They start with a pump and then move to a hint
if the pump fails, followed by a prompt question and an assertion if students fail to
articula te the expectation. The pump Y hint Y prompt Y assertion cycle is



implemented by AutoTutor to encourage the student to articulate the answer and
cover expectations. The correct answers are eventually covered and the
misconceptions are hopefully corrected.

Conversational turn m anagement. Human tutors structure their conversational
turns systematically . Nearly every turn of the tutor has three information slots. The

first slot of most turns is feedback on the quality of the studentd s | asTtThist ur n.

feedback is either positive ( e . gvery goadd, dyeahd), neutral (e . guh huh g d see?),
or negative (e . gnot,quité ¢ Mot really §. The second slot advances the interaction
with a prompt for specific information, a hint, an assertion with correct informatio n,

a correction of misconceptions, or an answer

is a cue for the floor to shift from the tutor as the speaker to the student . For
example, AutoTutor ends each turn with a question or a gesture to cue the student to
do the talking. Otherwise the student and AutoTutor are at a standstill waiting for

the other to take the next turn.

3.3 Monitoring Students’ Cognitive States

One of the central questions is how well the tutor can track the psychological states

of the student as the tutor implements tutoring strategies. Available evidence
suggests that novice human tutors are not able to conduct student modeling at a fine -
grained level [Chi, Siler and Jeong 2004 ; Graesser et al. 2009 ; Person et al. 1994].
They are limited to performing approximate assessments rather than fine -grain
assessments. On the other hand, there is evidence to suggest that some of t he more
accomplished (or expert) human tutors perform fine -grained student modeling
because they are quite adept at assessing student knowledge [D'Mello et al. 2010c ;
Lepper and W oolverton 2002]. Computers can potentially show advantages over
novice human tutors to the extent that artificial intelligence algorithms can be used
to accurately conduct student modeling and generate intelligent responses.

Semantic matching algorithms.  Student modeling in the inner loop is executed
after each turn and consists of comparing what the student express es in language
with the list of expectations and misconceptions associated with a main question.
This requires semantic matching algorithms that compare the s tudent input with
Aut oTut or &6s @nd pnasconcetions. nitsis widely accepted that natural
language is imprecise, fragmentary, vague, ungrammatical, and elliptical, so it would

not be prudent to rely entirely on semantical Iy well -formed semantic matches.
AutoTutor therefore incorporates several semantic evaluation algorithms when
performing these matches, but notably Latent Semantic Analysis [Landauer et al.
2007], regular expressions, content word overlap metrics (that have higher weight for
low frequency words than high frequency words) [D'Mello et al. 2010b ], and
occasionally logical entailment [Rus and Graesser 2007]. LSA is a statistical
technique that measures the ¢ onceptual similarity of two text sources. In this
similarity matching algorithm , a vector representing the semantic content of the
contribution is created and compared to vectors that represent the semantic content
of expectations and misconceptions. The cosine between the two vectors is calculated
to produce a match similarity score from 0 to 1 (negative cosines are rare and are
converted to O in AutoTutor).

Covering an expectation and detecting a misconception . Early versions of
AutoTutor relied exclusively on LSA in  their semantic evaluation of student input.
The LSA algorithm in AutoTutor computed the extent to which the information
within the student turns (i.e., an individual turn, a combination of turns, or c ollective
sequence of turns) semantically matches each expectation in the ideal answer.

t
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Expectation Eiis considered covered if the content of the studentd s cumul ati ve set of
turns meets or exceeds a threshold T in its LSA cosine value (which varies fromn ear
0 to 1). That is, Ei is covered if the cosine match between Ei and the student input |
(including turns 1 though N) is high enough: cosine (Ei, | ). Th@ thréshold has
varied between .40 and .75 in previo us instantiations of AutoTutor.

Each expectation E; has an associated family of prompts and hints to get the
student to fill in most or all of the content words and propositions in Ei. Prompts and
hints are selected to maximize an increase in the LSA cosine match score (hereafter
called the match score) when answered successfully. Stated differently, hints and
prompts are selected to maximize pattern completion. Sometimes the student
expresses misconceptions during the dialogue. This happens when the student input
I matches a misconception M with a suf ficiently high match score. At that point
AutoTutor corrects the misconception and goes on.

Selecting the next expectation to cover . During the course of the dialogue and
student modeling, the system periodically identifies a missing expectation and posts

the goal of covering the expectation. When expectation Ei is missed (and therefore
posted), AutoTutor attempts to get the student to  articulate it by generating hints
and prompts affiliated with  Ei to help the student fill in missing words and
propositions. The selection of the next Ei to cover follows the principle of the zone of
proximal development or what some call frontier learning  [Brown et al. 1998 ;
Vygotsky 1986]. That is, AutoTutor builds on what the student has managed to
articulate. More formally, AutoTutor selects the next Ei from the set of expectations
that (a) has the highest match score and (b) has a subthreshold match score (i. e., the
expectation has not yet been covered). This subthreshold expectation selection
algorithm assumes that the expectations should not be covered in a prescribed
sequential order. However, ordering constraints may also be considered in a
sequential expectation selection algorithm. Some subject matters have ordering
constraints but others do not.

Student modeling across turns. The above specification for a single student -tutor

turn pair does not tell the whole story, however. If the student model  was completely

rebuilt on each student turn, the semantic matches would wildly vary, representing

the vicissitudes of the studentds ability to provi
tutor dialogue moves. Addi ti onal | vy, the student umpsr esponses t
and hints are typica lly only a few words in length . This relatively low verbosity

introduces problems with the fidelity of the semantic matching algorithms , especially

LSA. Therefore, the semantic match is calculated using both the  current student

response alone (local assessment) and the current response concatenated with all

previous student responses for the current problem (global assessment). This global

assessmentr epresents AutoTutord®s model of student know
particular ma in problem. It moves beyond short student responses and helps

AutoTutor maintain continuity of the student model between turns.

3.4 AutoTutor Interface

Aut oTut or 0 svariesmatress fersions, but most versions have the five major

windows shown in Figure 1. Window 1 (top of screen) is the main question that stays

on the computer screen throughout the conversation about the question. Window 2

(left middle) is the animat ed conversational agent that speaks the content of

AutoTutor ds turns. Wi ndow 3 (right mi ddl e) i s ei
diagrams. Wi ndow 4 (right bottom) displaystemhe student st
in. Window 5 (left bottom) displays the dialog ue history of the student and the tutor.



[ AutoTutor
Flle Edit Session FPlugins Help

How does the operating system interact with the word processing program when you create a document?

Log of previous responses: Enter pour response here:

| lyes, the operating system creates space to save the document so

Student: the operating system allows you to save new information not lost when you open another program
on a document

Tutar: | see, ok
Tutar: Can you elaborate & bit on that?

Student: yes. the operating system creates space to save the
document so that it is not lost when you open another program

Figure 1. AutoTutor interface

3.5 AutoTutor Architecture

Th e maj or components of Aardg prdsented ind Bigurear2c hi t ect ur e

AutoTutor operates as a distributed client -server application implementing a
transient asynchronous mode of communication. The client and the server are
written in the C# language within the Microsoft .NET framework. The subsequent
discussion provides a very brief overview of the architecture. Additional details can

be found in Graesser et al. [2005] .

Speech act classification . The bottom left of the figure depicts the student
entering infor mation via the user interface. The information in each student turn is
segmented into speech acts, based on punctuation and (in some systems) a syntactic
parser. Each speech act is assigned to one of approximately 20 speech act categories.
These categories include assertions, 16 different categories of questions, short

responses (e . gyeah¢, aight 6 ) , ocognitiva expressions(e . gl. ,doondt wudhder st and
d seed) , a n domnmeidatave expressions (e . g What did you say? ¢. The

accuracy of classifying the student speech acts into categories varies from 0.87 - 0.96
percent [Olney et al. 2003 ].
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Figure 2. AutoTutor & srchigecture

Conversational management and response generation. The speech acts

expressed by the student on any giventurn N constrain AutoTutord&s conve
management of turn N+1. If the student asks a question, AutoTutor needs to answer

it if it has an answer, or otherwise it (a) generates dialogue moves to put the onus on

the student to find an answer ( e.g,0 Good questi on. How would you answ
generates dialogue moves that evade getting an answer ( e.g., 0 Good gquesti on, but |
cannot answer it naaw. L ét & shpeowmdsstaudeamognitive

response (e.g., 0d m | ost , |, dhem AutoTutkr nacknodvledges this and

presents a hint to advance the d ialogue in productive avenues. Most of the s tudent

responses are answers to the tutor 0esvallmiecht s, prompt ¢

on quality (see Section 3.3) and this evaluation drives the pump Y hint Y prompt Y
assertion cycles.
The Conversation Manager i s sensitive to the adisdentds Spec¢
generally responsible for keeping track of the tutorial dialogue . The Conversation
Manager can be represented by a set of daf <state> then <action> 6 production rules
[Anderson and Gluck 2001 ] or of a finite state transition network [Graesser et al.
2001a]. The Conversation Manager passes information to t he Response Generator,
which generates the actual text of the dialogue moves and adds appropriate discourse
markers. This content is expressed either via text or by an animated conversational
agent that is displayed on the interface (see Section 0).

Data structures and databases. As depicted in the figure , AutoTutor has a
repository of different static data structures that can be created and updated with
authoring tools. First, most versions of AutoTutor represent world knowledge as  LSA
spaces, but some versions of AutoTutor or its progeny have incorporated other forms

of world knowledge representation, such as textbooks, glossaries, and conceptual

graph structures. Second, there are Conversation Rules that are represented as
production rules, finite -state transition networks, or recursive augmented state

transition networks. Third, there are different categories of Frozen Expressions that
have different discourse functions. For example , there are different ways for

AutoTutor to express positive feedback ( e . gyesp dy@ahg dgoods, dgreat ¢, dfantastic 0 ,

2Aut oTutor does not revisit the studentds question, although t he
answered over the course of the dialogue.



aright on ¢ and different way s that the student can express m etacommunicative
speech acts (e . gWhat did you say? 6 Pleéaserepeat.|di d not Hear thato

The Curriculum Script , as briefly described in Section 3.2, is a critical component
of the AutoTutor architecture. Each script contains the content associated with a
guestion or problem. For each , there is (1) the ideal answer, (2) a set of expectati ons,
(3) families of potential hints, correct hint responses, prompts, correct prompt
responses, and assertions associated with each expectation, (4) a set of
misconceptions and cor rections for each misconception, (5) a set of key words and
functional syno nyms, (6) a summary, and (7) markup language for the speech
generator and gesture generator for components in (1) through (6) that require
actions by the animated agents . AutoTutor is equipped with a  Script Authoring Tool
[Susarla et al. 2003 ] to enable subject-matter experts to easily create the content of
the curriculum script. The complete Curriculum Script for one computer literacy
guestion in published in the Appendix of [Person, Graesser, Kreuz and Pomeroy
2003].

All of the information collected during the AutoTutor -student interaction is stored
in Log files. These files are fed into the Log Analyzer that can be inspected by the
researcher and can inform the lesson planner or knowledge engineer who uses the
Authoring Tools to create new content or edit existing content . These modules are, of
course, standard for all learning managemen t systems.

4. EVALUATIONS OF AUTOTUTOR

AutoTutor has been evaluated along a number of dimensions such as the quality of
its dialogue, the accuracy by which it evaluates student responses, its student model,
and most importantly its efficacy in promoting lear  ning gains. This section provides a
synthesis of the major finding along each of these four dimensions.

4.1 Evaluating AutoTutor’s Conversational Smoothness

We performed a bystander Turing test to evaluate t he naturalness of Aut oTu
dialogue moves [Person and Graesser 2002]. We randomly selected 144 tutor moves
in the tutorial dialogs between students and AutoTutor. We asked six human tutor s
to fill in what they would say at these 144 points.  So, at each of these 144 tutor turns,
we had what the human tutor generated and what AutoTutor generated. We
subsequently tested whether a group of students could discriminate between dialogue
moves that were generated by a human versus a computer; half in fact were
generated by the human tutors and half were by AutoTutor . We found that the
bystander students were unable to discriminate whether particular dialogue moves
had been generated by a computer v ersus a human; the d dliscrimination scores were
actually a bit negative ( -.08), but not significantly. This rather impressive outcome
supports the claim that AutoTutorisa  good simulation of human tutorial dialogue.

4.2 Evaluating AutoTutor’s Semantic Matching Algorithms

We have analyzed the accuracy of the match evaluation scores by comparing
AutoTutords scores to | udgme iGrasssepdt al.s2008j;e c t matter
Graesser et al. 2000]. For example, we have analyzed the complete answers that
students gave as an answer to one of the challenging physics questions, recorded
Aut oTutords match evaluation score for each expect e
ratings from 5 expert physicists as to whether each expectation/misconception was
present in the stud ent answers. The correlations between these match evaluation
scores and expert ratings have varied between 0.35 and 0.50, depending on the
criterion, semantic algorithm, and other details that need not be considered here.
One expert physicist rated the de gree to which particular speech acts expressed
during AutoTutor training matched particular expectations. These judgments were



made on a sample of 25 physics expectations and 5 randomly sampled student

answers per expectation, yielding a total of 125 pairs  of expressions. The question is

how well the expert ratings correlate with match evaluation score for the relevant

expectation. We f ound that the correlation between an exp
match evaluation score was modest ( r = .29), but signifi cant in accounting for the 125

items.

4.3 Evaluating AutoTutor’s Student Modeling

The accuracy of the student model algorithms have been evaluated over the years. In
one analysis of conceptual physics, we collected pretest scores on a psychometrically
validat ed test called the Force Concept Inventory [Hestenes et al. 1992]. If AutoTutor
is performing effective user modeling, then the dialogue moves selected by AutoTutor
should be correlated wit h geohphysisstSuaheredickods pri or know
held up when we analyzed the dialogue moves of AutoTutor as a function of students 8
prior knowledge [Jackson and Graesser 2006]. For example, the short feedback that
AutoTutor provides after the student s @urns is either posit ive, neutral, or negative.
The studentsd physics knowledge had a significant
feedback moves (r = .38) and a negative correlation with negative feedback ( r = -.37).
Another example applies to the corrections that AutoTutor made when identifying
student errors and misconceptions. The correlation between prior knowledge and
corrections was negative ( r = -.24), and marginally significant.
Yet another example pertains to the four dialogue move categories that attempt to
cover the content of the expectations in the curriculum script: Pumps, hints, prompts,
and assertions. The proportion of dialogue moves in these categories should be
sensitive to the studentTlBese iskanconinuend firom the f physics.
student -provided information to tutor -provided information as we move from pumps,
to hints, to prompts, to assertions. The correlations with student knowledge reflected
this continuum perfectly, with values of  0.49, 0.24, -0.19, and -0.40, respectively.
Thus, for students with more knowledge of physics, all AutoTutor needs to do is
primarily pump and hint, thereby encouraging or nudging the student to supply the
answer to the question and articulate the expectations. For students with less
knowledge of physics, AutoTutor ne eds to generate prompts for specific words or to
assert the correct information, thereby extracting knowledge piecemeal or telling the
student the correct information.  These results support the claim that AutoTutor
performs user modeling with some degree o f accuracy and adaptively responds to

studentsd knawledge | evels

4.4 Learning Gains Produced by AutoTutor

Perhaps the most important question is whether AutoTutor helps students learn.

The learning gains of AutoTutor have been evaluated in over 20 experiments since its
inception. Training times in these studies varied from 30 minutes to 4 hours and
tutorial sessions were sometimes split across multiple days. Assessments of
AutoTutor on learning gains have shown effect sizes of approximately 0.8 sigma in
the ar eas of computer literacy [Graesser, Lu, Jackson, Mitchell, Ventura, Olney and
Louwerse 2004] and Newtonian physics [VanLehn, Graesser, Jackson, Jordan, Olney
and Rose 2007]. These effect sizes place AutoTutor somewhere between an untrained
human tutor [Cohen, Kulik and Kulik 1982 ] and an ITS with ideal tutoring
strategies [Corbett 2001 ]. Some of the hypothesized ideal tutoring strategies include
Socratic teaching, delayed feedback, motivational support [Lepper and Chabay 1988 ;
Lepper and Woolverton 2002 ]. AutoTutor improves learning between 0 and 2.1 sigma
(a mean of 0.8), depending on the learning performance measure, the comparison
condition, the subjec t matter, and the version of AutoTutor.



Measures of learning have varied in scope, depth, difficulty, and open -endedness.
They have included: (1) multiple choice questions on shallow knowledge that tap
definitions, facts and properties of concepts, (2) mu ltiple choice questions on deep
knowledge that tap causal reasoning, justifications of claims, and functional
underpinnings of procedures, (3) essay quality when students attempt to answer
challenging problems, (4) a cloze task that has students fill in mi  ssing words of texts
that articulate explanatory reasoning on  the subject matter, and (5) performance on
problems that require problem -solving.

Assessments of learning gains obviously depend on the comparison conditions.
The learning gains are approximate ly 0.8 for AutoTutor compared to a do-nothing
control or a condition of reading from a textbook on the same topics for an equivalent
amount of time. The learning gains are approximately the same for AutoTutor and
an expert human tutor who interacts with th e student by computer -mediated
communication (as opposed to face -to-face).

The largest learning gains from AutoTutor have been on deep -reasoning measures
rather than measures of shallow knowledge [VanLehn, Graesser, Jackson, Jordan,
Olney and Rose 2007]. AutoTutor is most effective when there is an intermediate gap
bet ween t he student 6s prior knowl e dogueor; and t he i
AutoTutor is not particularly effective in facilitating learning in students with high

domain knowl edge, nor when the materi al 00 much

(7]
—_

4.5 Limitations and Potential Areas for Improvement

The assessments point to the successes of AutoTutor, but it is important also to
acknowledge some of its limitations. One limitation is that the conversational
dialogue may have minimal incremental gains on learning when the exchange is
time -consuming and the knowledge covered is shallow ra ther than deep. The
conversational interaction is tedious for some  students and even irritating fo r a small
percentage. A second limitation is that students lose patience with AutoTutor when

the conversation breaks down. Such breakdowns occur when the stud ent modeling is
imperfect, the curriculum script is incomplete, student speech acts are misclassified,
and AutoTutor is viewed as being unresponsive to what the student is saying. A third
limitation is that AutoTutor can correctly answer only a modest prop ortion of student
guestions so students eventually stop asking them 3,

One important future direction is to improve the student modeling and
conversational facilities of AutoTutor in order to minimize some of its persistent
blemishes. This can be accomplis hed in a number of ways. For example, t here can be
checks in the authoring tools to make sure that the content is complete when it is
prepared by the author of the curriculum scripts. Another direction is to develop
more sophisticated question answering facilities so that AutoTutor can answer a
broad diversity of question s. This would contribute to mixed -initiative dialogue and
put more control in the hands of the student .

5. AFFECTIVE AUTOTUTOR

AutoTutor is quite effective in helping students learn by model ing and responding to
their cognitive states. However, this is only one part of the story because learning
consists of a complex interplay between cognition, emotions, and learning [Snow et
al. 1996]. We have recently developed two new versions of AutoTutor that detect and

respondto students & af fecti ve an[@Mawoegal2008byed Me¢ lalt @ set al
2009]. These affect-sensitive versions of AutoTutor , called the Supportive and

3 Some of these communication failures were systematically tracked in a study that compared the
traditional typed input version of AutoTutor with a spoken -input version of the tutor. Please see [D'Mello,
King and Graesser 2010b ] for details.



Shakeup tutors, are collectively referred to as Affective Auto  Tutor. They have a set of

production rules that were designed to
cognitive and affective states with tutor actions to address the presence of  boredom,
confusion, and frustration.

The achievement of an affect -sensiti ve tutorial interaction engages the tutor and
student in an affective loop [Conati et al. 2005 ]. This loop includes the real -time
detection of the affective states that are relevant to learning , the selection of
appropriate tutor actions that maximize learning while influencing the student &

affect, and the synthesis of emotional expressions by the tutor as it attempts to
engage the student in a more human -like, naturalistic manner.

The affective loop in an integrated system can be viewed from the perspective of
either the student or the tutor. The student-centric view consists of analyzing the
prominent affective states in the student, assessing their potential impact on
learning , identifying how these states are manifest ed in the student, and developing
an automatic affect detection system. The tutor -centric view explores how good
human tutors or theoretical ideal tutors adapt their instructional agenda to
encompass the emotions of the student. This expert knowledge is then transferred to
computer tutors such as Affective AutoTutor . Embodied conversational agents tha t
simulate human tutors are programmed to synthesize affective elements through the
generation of facial expressions, the inflection of speech, and the modulation of
posture.

5.1 Identifying Affective States

There is the important issue of identifying the affe ctive states that students
experience during interactions with AutoTutor and other learning environments. One
possibility is that the basic emotions (anger, sadness, fear, disgust, happiness, and
surprise) [Ekman 1992] constitute students & pri mary emoti
Alternatively, the so called academic emotions or learning -centered emotions (e.g.,
anxiety, boredom) might be relevant in learning contexts [Pekrun and Stephens
2012; Schutz and Pekrun 2007 ]. We addressed this fundamental question by
conducting a number of studies that aimed at identifying the affective states that
student s typically experience while interacting with AutoTutor, with the expectation

that these findings w ill generalize to other learning environments  [Baker et al. 2010 ;
D'Mello in review ].

In the Observational study, five trained judges observed the affective states
(boredom, confusion, frustration, eureka, flow/engagement, versus neutral) of 34
students who were learning introductory computer literacy with AutoTutor [Craig et
al. 2004]. In the Emote-Aloud study, seven college students verbalize d their affective
states while interacting with AutoTutor [D'Mello et al. 2006 ]. The Multiple -Judge
study consisted of 28 student s completing a 32 -minute session with AutoTutor, after
which their affe ctive states were judged by the student s themselves, untrained peers,
and two trained judges. Judgments were based on videos of students & f ac
computer screens which were recorded during the tutorial session [Graesser et al.
2006]. The Speech Recognition study was similar to the multiple  -judge study with the
exception that students spoke their responses to the AutoTutor system instead of
typing them (see Section 7.1). Retrospective self -reports by the student s constituted
the primary affect measure in this study [Graesser et al. 2007a]. The Physiological
study also implemented the retrospective affect judgment procedure, but the
student s were 27 engineering students from an Australian University [Pour et al.
2010] instead of the undergraduate psychology students from the U.S. who com  prised
the samples in the previous four studies

When averaged across studies, flow/engagement was the most frequent state,
comprising 24% of the observations. Boredom and confusion were the second most
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frequent states (18% and 17%, respectively) followed by frustration (13%). Neutral
was reported for 19% of the observations, while delight (6%) and surprise (3%) were
rare. Indeed, boredom, flow/engagement, confusion, and frustration are more
frequent affective states tha t students experience during interact ions with
AutoTutor.

Although the present set of studies did not directly compare the occurrence of
these learning -centered affective states with the basic emotions, we are currently in
the process of conducting a meta -analysis of 21 studies that have tracked the
incidence of both the learning -centered (e.g., boredom, confusion, flow/engagement,
frustration) and basic emotions [D'Mello in review ]. Preliminary results of the meta -
analysis indicate that with the exception of happiness, which occurs with some
frequency, the remaining basic emotions were considerably rare when compared to
the learning -centered affective states. The basic emotions have claimed center -stage
of most emotion research in the last four decades, but these results suggest that they
might not be relevant to learning, at least for the short learning sessions (30 minutes
0 1.5 hours) of the studies that were analyzed . In contrast, confusion, frustration,
flow/engagement, and boredom were the prevalent emotions, indicating that it is
critically important for ~ Affective AutoTutor to respond to these states.

5.2 Detecting Affective States

Our affect detection system monitors conversational cues [D'Mello, Craig, Sullins and
Graesser 2006; D'Mello et al. 2008a ], gross body language [D'Mello and Graesser
2009; D6 Me | | o20@7}, and facial features [D'Mello et al. 2007 ; McDaniel et al.
2007] (see Figure 3). The classifier was trained on data obtained in a study that
involved synchronization and data recording of the sensors while 28 student s
interacted with Au toTutor [D'Mello and Graesser 2010 ]. Manually annotated affect
labels, which are required for the supervised learning systems, were obtained by
multiple human judges including the  student (self judgments), an untrained peer,
and two trained judges (see Multiple -Judge study in Section 5.1 and [D'Mello and
Graesser 2010] for additional methodological details ).

BPMS AutoTutor Camera
(Body (Contextual Cues) (Facial Features)
Language)

Figure 3. Automated affect sensing



Conversational cues (dialogue features) . A one-on-one tutoring s ession with

AutoTutor yields a rich trace of contextual information, characteristics of the

student , episodes during the coverage of the topic, and social dynamics between the

tutor and student. These conversational cues cover a broad and deep feature set that

includes assessments of deep meaning, world knowledge, and pragmatic aspects of

communication. Therefore, several conversational features and discourse markers
(collectively called dialogue features) were extra
were utilized to infer the studentés af fect . The dialogue features w
each student -tutor turn (i.e. student submits response, tutor provides feedback, tutor

presents next question). They included temporal features (e.g. time on problem,

response time), assessments of response verbosity (e.g. number of characters, speech

act), assessments of the conceptual quality o f the studentéfs response obt
Latent Semantic Analysis (LSA), conversational directness (i.e. how much

information the tutor is  explicitly providing to the student), and tutor feedback

(negative, neutral, positive). The f ul | |l ist of features is can be f
[2008].

Gross body language (posture features) . The Body Posture Measurement System

(BPMS), developed by Te k scan E, was used to monitor the gross

student s during tutorial sessions with AutoTutor (see left monitor of Figure 3). The
BPMS consists of a thin -film pressure pad (or mat) that can be mounted on a variety
of surfaces. The output of the BPMS system con sisted of two 38 x41 matrices (for the
back and seat) with each cell in the matrix corresponding to the amount of pressure
exerted on the corresponding element in the sensor grid.
We relied on an attentive -arousal framework [Bull 1987 ] to interpret relationships
between the posture features and the affective states of the student. One can think of
heightened pressure in the seat as resonating with
towards the source of stimulation (i.e., high attentiveness since the student is
positioning his or her body towards the AutoTutor interface, or a short distance
between the nose and the screen). On the other hand, an increase in pressure on the
back of the chair suggests that the student i s | eaning back and detaching
from the stimulus (low attentiveness). Arousa | was operationally defined by the rate
of change of pressure exerted on the back and the seat of the pressure sensitive chair
and is similar to the degree of activation. In addition to these primary features, we
also tracked changes in body position and arousal before and after an emotional
episode (see[D'Mello and Graesser 2009 ] for details).

Facial feature tracking. We use the Mindreader system [el Kaliouby and Robinson

2005a; el Kaliouby and Robinson 2005b ] for fully automated facial feature tracking.

The Mindr eader system uses a commercially available facial feature tracking system

for the real time analysis of facial and head movements.  Mental states are inferred

from the facial and head movements with a multilevel modeling approach with

Dynamic Decision Netwo rks. The individual facial and head movements are at the

lowest level of the hierarchy . These movements are then used to recognize Action

Units (AU) al a Ekmandés Faci al A c[EkmannandG-deden 19¥y8 [Sy st e m
For example, AU 4 (brow lowerer) and AU 7 (lid tightener) are tw 0 action units that

are commonly associated with confusion [Mc Dani el , D6 Mel l o, King, Chi p m:
and Graesser 2007]. Displays, or combinations of AUs, occupy the next level of this

multilevel hierarchy. Example displays include mouth open (combination of AUs 25

and 26 or jaw drop and lips part, respectively), and head nod (combination of AUs 53

and 54 or head up and head down, respectively). The displays are then combined fo r

mental state inference. In this fashion, the multilevel model incorporates different



levels of spatial and temporal detail in a hierarchical manner that was inspired by
models of how humans perceive facial activity

Multimodal affect detection. The system uses a decision-level fusion algorithm
where each channel (conversational cues, face, posture) independently provides its
own di agnosi s of t he student ds af fective state.
combined with an algorithm that selects a single affective state and a confidence
value of the detection. The algorithm relies on a voting rule enhanced with a few
simple heuristi cs.

A spreading activation network is used to model decision -level fusion [Rumelhart
et al. 1986]. The network consists of emotions and sensors as nodes with  projecting
and lateral links among them . Each sensor node is connected to each emotion node in
the network by a projecting link. The degree to which a particular sensor activates a
particular emoti on is based on the accuracy by which the sensor has detected the
emotion in past offline evaluations. Hence, if one sensor is more accurate at detecting
boredom than confusion, it will excite the boredom node more than the confusion
node, even if its curre nt estimates on the probability of both emotions are
approximately equivalent.

It is also possible to connect e ach to every other emotion with a n excitatory or
inhibitory lateral link . Related emotions excite each other while unrelated emotions
inhibit eac h other. For example, confusion would excite frustration but boredom
would inhibit engagement. It should be noted that these lateral links are sometimes
not activated when the network is instantiated in some of our simulations. Indeed,
the configuration of links and valences are varied in these simulations.

Each emotion node receives activation from both link s and maintains an
activation value. At any time, the emotion node with the highest activation value is
considered to be the emotion that the student is currently experiencing. The decision -
level fusion algorithm operates in four phases.

1. Detection by Sensors. Each sensor provides an independent estimate of the
likelihood that the student is experiencing an emotion. The likelihood can be
represented as a probability value for each emotion (e.g., the posture sensor
expresses a .53 probability that the current emotion is  boredom).

2. Activation from Sensors . Sensors spread activation and emotion nodes
aggregate this activation.

3. Activation from Emotion Nodes . Each emotion spreads the activation received
from the sensors to the other emotions, so that some emotions are excited
while others are inhibited.

4. Decision. The emotion with the highest activation is selected to be the emotion
that the student is current ly experiencing.

5.3 Regulating Negative Affective States

Despite the complexity associated with real -time affect detection, detection is only
one piece of the puzzle. The next challenge is to help students regulate their affective
states so that positive states such as flow/engagement and curiosity persevere, wh ile
negative states such as frustration and boredom are prevented or regulated when
they arise . As an initial step, we focused on interventions that help student s regulate
the negative affective states of boredom, frustration, and confusion.

Foundations o f affect -sensitivity. An examination of the education and tutoring

literature did not provide any clear guidance on how to best respondto st udent s @
affective states during tutoring. Some theories did address the presence of certain

negative affective stat es, so insights gleaned from these theories were applied to

respond to boredom, frustration, and confusion. The major theories that were



considered included attribution theory  [Batson et al. 1995 ; Heider 1958 ; Weiner

1986], empathy [Dweck 2002; Lepper and Chabay 1988 ], cognitive disequilibrium

during learning [Festinger 1957 ; Graesser and Olde 2003; Piaget 1952], and

politeness [Brown and Levinson 1987 ; Wang et al. 2008]. A discussion of how these

theories informed affect -sensitive responses appears in [D& Me | | o, Craig, Fi ke ai
Graesser 2009].

In addition to the theoretical considerations, the assistance of experts in tutoring
was enlisted to help create the set of affect-sensitive tutor responses. When there was
no guidance from theory or expertise, the research group added affect-sensitive rules
that were intuitively plausible. So in a nutshell, the rules were determined by theory,
experts, and intuition. As such, the specific rules that were developed should be
considered to be an initial attempt towards achieving affect  -sensitivity in a tutoring
context rather than a rigid set of specifications. The architecture of the Affective
AutoT utor (discussed in Section 5.4) was designed to afford easy implementation and
testing of a variety of responses, so the system itself can be consid ered to be a flexible
framework to experiment with  different affect-sensitive tutorial strategies.

The affect-sensitive production rules that we developed were designed to map
dynamic assessments of the studentsd ciaagnitive and
tutor actions. In particular, at any given turn  Affective AutoTutor keeps track of five
major informational parameters that provide the foundations for affect sensitivity
(three affective parameters and two cognitive parameters). The three affective
parameters include the current affective state detected, the confidence level of that
affect classification, and the previous affective state detected. The cognitive
parameters include a global measure of student ability (dynamically updated
throughout the s essi on) and t he conceptual guality of tr
response (see Section 3.3).

Taking these five parameters as input, Affective AutoTutor is equipped with a set
of production rules to map the input parameters with appropriate tutor actions.
Affective AutoTutor responds with (a) feedback for the current answer with an
affective facial expression, (b) an affective statement accompanied by a m atching
emotional facial and vocal expression by the tutor, and (c) the next dialogue move to
advance the conversation .

Feedback with affective facial e xpression. AutoTutor provides short feedback to
each student response. There are five levels of feedba ck: positive, neutral -positive,
neutral, neutral -negative, and negative. Each feedback category has a set of
predefined phrasest hat the tutor randomly selects from. 0Go
are examples of positive feedbdclbYowhiare ®hhathei s
wrong trackoé are examples of negative feedback.
In addition to articulating the textua | content of the feedback, Affective AutoTutor
also modulates its facial expressions and speech prosody. Positive feedback is
delivered with an approval expression (big smile and big nod). Neutral positive
feedback receives a mild approval expression (small smile and slight nod). Negative
feedback is delivered with a disapproval expression (slight frown and head shake),
while the tutor makes a skeptical face when delivering neutral -negative feedback (see
Figure 4). Neutral feedback is not accompanied by a facial expression.
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Figure 4. Synthesized facial expressions by the AutoTutor agent

Disappointment Skepticism

Affective response . After delivering the feedback, Affective AutoTutor delivers an

emotional statement if it senses that the student is bored, confused, or frustrated. A

non-emotional discourse marker (e . g . OMoving onbé6, O0Try this oneod)
student is neutral. We have currently implemented two pedagogically distinct

variants of Affective AutoTutor . These include a Supportive and a Shakeup

AutoTutor.

Supportive AutoTutor . The Supportive AutoTutor responds to the students &
affective states via empathetic and motivational responses. These responses always
attribute the source of the students @ emoti on t o the matiadents al i nstead

themselves. So the Supportive AutoTutor might respond to mild boredom with , 0 Thi s
stuff can be kind of dull sometimes, so I'm gonna try and help you get through it.
Let's god. A more encouraging respeqdeitssrequired
keep going, SO we can move o0n ntinportanbpuiatttohi ng mor e e X
note is that the Supportive AutoTutor never attributes the boredom to the student.
Instead, it always blames itself or the material.
A response to confusion would include attributing the source of confusion to the
material ( e.g., 0 S cerof this material can be confusing. Just keep going and | am sure
you will get itépg,od Kindywnitalwagsrconvey thirggs dearlf.
I am al ways happy to repeat myself if you need it
confusion is | ow or mild, then the pattern of responses entails: (a) acknowledging the
confusion, (b) attributing it to the material or tutor, and (c) keeping the dialogue
moving forward via hints, prompts, etc. In cases of severe confusion, an encouraging
statement is included as well.
Similarly, frustration receives responses that attribute the source of the
frustration to the material or the tutor coupled with an empathetic or encouraging
statement . E x a mp mmay ot benperfect,dbat:I'm only human, right?
Any way, l et ' s keep going and try Itkmow this ni sh up t hi
material can be difficult, but | think you can do it, so let's see if we can get through
the rest of this problem. ¢
As a complete example, consider a student that has been performing well overall
(high global ability), but the most recent contribution was not very good. If the
current emotion was classified as boredom, with a high probability, and the previous
emotion was classified as frustration, then AutoTutor might say the following:
0 May b e topichiiss getting ol d. [ I help you finish so w
This is a randomly chosen phrase from a list that was designed to indirectly address
t he st udredomh @l tobtrg to shift the topic before the student becomes
disengaged from the learning experience. This rule fires on several different
occasions, and each time it is activated the Supportive AutoTutor will select a
dialogue move from a list of associ ated moves. In this fashion, the rules are context
sensitive and are dynamically adaptive to each individual ~ student .



Shakeup AutoTutor. The major dif ference between the Shakeup AutoTutor and
the Supportive AutoTutor lies in the source of  emotion attribut ion. While the
Supportive AutoTutor attributes the students 8 negat i v® the mabetial @ n s

itself, the S hakeup AutoTutor directly attributes the emotions to the student s. For

example, possible shakeup responses to confusion are, 6 Thi s mat eotiyaul has ¢
confused, but | think you have the right idea. Try thisédbu aemdt asd

confused as you mightthink. I *' m actually kind of iIimpressed. Keep

Another difference between the two versions lies in the conservational style.
While the Supporti ve AutoTutor is subdued and formal, the  Shakeup tutor is edgier,
flaunts social norms, and is witty. For example, a supportive response to boredom

would be oOHang in therara &aboutlohgegdheThinhg@s estinrn
shakeup counterpart of thisr esponse i s 0Gee zldbehbbredtom,tbutf f sucks.
gotta teach what they tell meo.

Affective facial expression and affectively modulated speech. The affective

response is accompanied by an emotional facial expression and emotionally
modulated speech. These affective expressions include empathy, mild enthusiasm,
high enthusiasm, skepticism, and neutral in some cases. The facial expressions in
eachdi splay were informed by Ekmandés work on the fa
expression [Ekman and Friesen 1978 ].
The facial expressions of emotion displayed by Affective AutoTutor are augmented
with emotionally expressive speech synthesized by the agent. The emotional
expressivity is obtained by variations in pitch, speech rate, and other prosodic
features. Previous research has |l ed us to conceptu
on the indices of pitch range, pitch level, and speech rate [Johnstone and Scherer
2000]. The current quality of the emotionally -modulated speech is acceptable,
although there is the potential for improvemen t.

Next dialogue move. Finally, AutoTutor responds with a move to advance the

dialogue. In the current version of Affective AutoTutor , this dialogue move is

sensitive to the studentd s cognitive state but not to his or h
Section 3). That is, affect -sensitivity is currently limitedto t h e t shorofeedbsmck

and motivational responses and but not its pedagogical dialogue moves that advance

the learning (i.e., pumps, hints, prompts, assertions). Future affect -sensitive
interventions will focus on t hée¢egthntirgmwiieea pedagogi cal
student is stuck and frustrated ). This adaptation would increase the bandwidth of

communication and allow Affective AutoTutor to respond at a more sophisticated

metacognitive level.

5.4 Architecture of Affective AutoTutor

The architecture of Affective AutoTutor is presented in Figure 5. This version is
somewhat different from the AutoTutor architecture that was described in Section
3.5 because it represents a newer version of the system (v3) . Affect detection occurs
at the client in real time and the detected state is transmitted to the AutoTutor
server. The Affective Dialogue Manager integrates the d i agnosi s of the studen
cognitive (via the Language Analyzer and Assessmentsmodules) and affective state s
in order to select an action that is sensitive to  their emotions and cognitions.
Information from the physical sensors including a camera and postu  re sensor is
collected (link 1a) and transmitted to the  Affect Detector (2a and 2b). At the same
time, contextual information is collected from the AutoTutor server (1b) and
transmitted to the Affect Detector (2c). At the end of a conversational turn, the  Affect
Detector transmits its diagnosis of the studentés af fective state along with
the student 6s Hub $p bha kaaguadg® Analyrer then analyses the text



of the response (5a) by parsing the text and detecting questions and other s peech

acts. The Assessmentsmodule compares the conceptual quality of the text based on

expectations and misconceptions stored in the Curriculum Script and with LSA (5b).

The Dialogue Manager, the Affective Dialogue Manager , and the Question Asking
modules pl an and generate the tutoros response to
affective states (5¢). The response is transmitted to the ¢l ient (6), where it is rendered

by the animated pedagogical agent, thereby completing one affect -responsive

student -tutor turn .
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Figure 5. Architecture of Affective AutoTutor

6. EVALUATION OF AFFECTIVE AUTOTUTOR

Affective AutoTutor has been evaluated in terms of its abi
affective states and to improve learning gains when compared t o the non-affective
AutoTutor.

6.1 Affect Detection Accuracy

The multimodal classifier that we have developed integrates classification decisions
from three unimodal classifiers: namely a dialogue -based classifier, a posture -based
classifier, and a classifier that relies on facial feature tracking  (See Section 5.2). We
are currently in the process of systematically evaluating this classifier, so
classification accuracy scores not yet available. However, we have performed
extensive evaluations of earlier versions of the system [D'Mello and Graesser 2010 ],
so the results of these evaluations are summarized here.

As a precursor to the fully automated decision -level multimodal classifier that was
integrated into Affective AutoTutor , we have developed and extensively validated



unimodal classifiers that focus on the dialogue, posture, and facial features and a
semi-automated multimodal classifier . These classifiers were all trained and
validated on data from the Multiple -Judge study described in S ection 5.1. We begin
with a description of the classification accuracy associated with individual channels
followed by an evaluation of the semi-automated multimoda | classifier.

Conversational cues (dialogue f eatures) . We compared the accuracy by which 17
standard classifiers (e.g., Naive Bayes logistic r egression, support vector machines)
could detect the affective states from the dialogue features [D'Mello, Craig,
Witherspoon, McDaniel and Graesser 2008a ]. Machine learning experiments with 10 -
fold cross validation indicated that standard classifiers were moderately successful in
discriminating the affective st ates of boredom, confusion, flow/engagement
frustration, and neutral, yielding a peak accuracy of 42% with neutral ( chance = 20%)
and 54% without neutral ( chance = 25%). Individual detections of boredom,
confusion, flow, and frustration, when contrasted wi th neutral, had accuracies of
69%, 68%, 71%, and 78%, respectively (chance = 50%). Follow-up classification
analyses that assessed the degree to which machine -generated affect labels
correlated with affect judgments provided by humans revealed that human -machine
agreement was on par with novice judges (self and peer) but quantitatively lower
than trained judges.

Gross body language (posture). As described in Section 5.2, an automated body
pressure measurement system was used to capture the pressure exerted by the
student on the seat and back of a chair during the tutoring session. Two algorithms

to detect affect from the pressure maps were developed . The first algorithm focused
on the average pressure exerted, along with the magnitude and direction of changes

in the pressure during emotional experiences (see Section 5.2). The second algorithm
monitored the spatial and temporal properties of naturally occurring pocke ts of
pressure. This second algorithm was not described in this paper because it is quite
complex and its performance was equiva lent to the simpler algorithm.

Machine learning experiments  with 10 -fold cross validation yielded affect
detection accuracies of 73%, 72%, 70%, 83%, and 74%, respectively (chance = 50%), in
detecting boredom, confusion, delight, flow, and frustration, from neutral [D'Mello
and Graesser 2009]. Accuracies involving discriminations between  combinations of
two, three , four, and five affective states (excluding neutral) were 71%, 55%, 46%,
and 40% with chance rates being 50%, 33%, 25%, and 20%, respectively.

Facial features.  Although there is considerable research on the use of facial feature
tracking to detect human emotions, a vast majority of this research has focused on
the basic emotions instead of the learning -centered states that are of relevance to
AutoTutor [Cal vo and D {§adeglet ab 2009). Tierefore, we conduced some
preliminary analy ses to assess the possibility of detecting the learning -centered
states from facial features [Craig et al. 2008 ; Mc Dani el , D6 Mel | o,
Tapp and Graesser 2007]. The Mindreader system (see Section 5.2) was in
development at this time because we were exploring some of the technical challenges
associated with the accurate automated detection of facial expressi ons, which is still
an open problem. Therefore, as an initial step, we had two trained judges code a
sample of the observations of emotions on the action units and assessed the
performance of a linear discriminant function classifier on this sample [McDaniel,
D6Mell o, King, Chipman, J]L[L.Tapp and Graesser
The classifier was also able to successfully discriminate between boredom,
confusion, delight, frustration, and neutral with an accuracy of 49 %, a significant
improvement over the base rate (chance) of 22%. We also computed accuracy scores
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for individually detecting each of the affective states. The results indicated that the
discriminant function was most successful in dete cting delight ( 72%, chance = 20%)
followed by confusion (58 %, chance = 28%). This was expected since both these states
are typically accompanied by animated facial expressions. The reliability of detecting

the more subtle affective state of boredom was lower than delight and confusion
(23%, chance = 12%). The results also indicated that the discriminant analysis was
unable to distinguish frustration from the other emotions. In fact, the accuracy score
for this emotion reflected an accuracy equal to random g uessing (17%, chance = 18%)).

Semi -automated m ultimodal affect classifier . We developed a semi-automated
feature level multimodal classifier [D'Mello and Graesser 2010 ]. The classifier is
considered to be semi-automated because while dialogue and posture features were
automatically computed, facial features consisting of action unit s [Ekman and
Friesen 1978] were manually annotated by trained humans. It is a feature -level
classifier because it combines features from individual modalities and uses this
combined feature vector for classification. This is different from decision -level fusion
where individual ¢ lassifications from the three sensors are combined via some voting
rule to yield a final classification. Comparisons of feature -level and decision -level
fusion on the present data set yielded equivalent performance  [D'Mello 2009 ], so we
focus on results from feature -level fusion here.

The evaluations on the unimodal classifiers discussed abo ve used within -students
cross validation methods . Therefore, different instances from the same student could
be in both the training and the test sets.  Individual differences play an important
role in affect expression, so it is prudent to consider an evaluation method that
transcends individual differences. We addressed this concern by assessing the
classification accuracy of the multimodal classifier with a split -half evaluation
method. Fourteen of the 28 students from the Multiple -Judge study were random ly
selected and their instances were assigned to the training set. Instances from the
remaining 14 students were assigned to the test set. Discriminant models were
constructed from the training instances and evaluated on the testing instances.

The discriminant models yielded a 48.8 % accuracy on the unseen test set for
discriminating between boredom, flow/engagement, confusion, frustration, and
neutral (chance = 20%). Precision (p) and recall (r) scores were: boredom (p = .39, r
= .65), flow/engagement (p = .59, r = .53), confusion (p = .52, r = .49), frustration (p
= .43, r = .44), and neutral (p = .38, r = .33). These results are positive because they
imply that thes e moderate accuracy scores can be expected in real -world situations
where the affec t detector has to classify the emotions of unknown students.

6.2 Efficacy of Affective AutoTutor in Increasing Learning

We conducted two experiments to evaluate the pedagogical effectiveness of the two
versions of Affective AutoTutor (Supportive and Shakeup as described in Section 5.3)
when compared to the original tutor (Regular AutoTutor) . This original AutoTutor
has a conventional set of fuzzy production rules that a re sensitive to cognitive states
of the student, but not to the s t u d eembtidmal states. Both versions of Affective
AutoTutor are sensitive to the student 6 affective states in distinct ways. The obvious
prediction is that learning gains should be super ior for Affective AutoTutor when
compared to the Regular AutoTutor.

Within -subjects experiment ¢ omparing Support  ive, Shakeup, and Regular

tutor s4. Participants and Design. The experiment had a repeated -measures design
where 36 undergraduate students from a university in the U.S participated in three

4 This experiment is described in more detail since it has not been previously published.



computer literacy tutorial sessions on different topics , one with the Regular
AutoTutor (no affect sensitivity), one with the Supportive AutoTutor, and one with
Shakeup AutoTutor . For example, a student could h ave been assigned the hardware
topic with the Supportive tutor, operating systems with the Shakeup tutor, and the
Internet with the Regular tutor. The order in which students used these versions of
AutoTutor and the computer literacy topics assigned to eac  h version (i.e., hardware,
operating systems, the Internet) was counterbalanced across student s with a Latin
Square.

Knowledge Tests. Student s were tested on their knowledge of computer literacy
topics both before and after the tutorial session (pretest a nd posttest, respectively).
The testing materials were adapted from computer literacy tests used in previous
experiments involving AutoTutor  [Graesser, Lu, Jackson, Mitchell, Ventura, Olney
and Louwerse 2004]. They were compr i sed of guestions that assess:
knowledge of all three computer literacy topics at deeper levels of comprehension .
Each test contained 24 multiple -choice questions: 8 questions on hardware, 8
guestions on operating systems, and 8 questions on In ternet. Students completed
alternate test versions for pretest and posttest. The two test versions, composed of
different questions, tested learners on the same subject matter and content. The
assignment of test versions to pretest versus posttest was coun terbalanced across
student s.

Procedure. Students were tested individually during a two and a half hour
session. First, students completed an informed consent and then the pretest. Next,

t he gener al features of AutoTutor ds di al ogue and
described to the students. Student s interacted with one of the version of AutoTutor

until three main questions were suc cessfully answered or the 30 minute training

period had elapsed . They then interacted with another version of AutoTutor followed

by the third version of AutoTutor.  Finally, students completed the posttest and were

debriefed.

Results. The dependent measure s was proportional learning gains associated with
each version of AutoTutor. Proportional learning gains were computed as: (posttest o}
pretest) / (1 -pretest). We conducted a 3 x 2 ANOVA on proportional learning gains
with tutor type (Regular, Supportive, S hakeup) as a within subjects factor and prior
knowledge (low and high median split on pretest scores) as a between subjects factor
The analysis did not yield a significant main effect for tutor type nor a significant
tutor type x prior knowledge interact ion. However, there was a 0.18 sigma trend in
favor of the Supportive tutor compared to the Regular tutor and a 0.28 sigma  trend
for the Supportive tutor over the Shakeup tutor. Learning gains for the Shakeup and
Regular tutors were on par.

There is a concern pertaining to our use of a within  -subjects experimental design
in lieu of a between -subjects design. The obvious concern with a within -subjects
design is that participating in the second session on a related subject matter might
cause interference with acquired knowledge in the first session . We attempted to
address this concern by only considering each studentds f i r st AutoTutor sess
which was either Regular, Supportive, or Shakeup. This resulted in only 12 students
in each group; a sample size too small for meaningful tests of significance but useful
to explore interesting trends. The trend indicated that there was a medium effect of
0.51 sigma in favor of the Supportive Tutor when compared to the Regular tutor and
the Shakeup tutor, which were simi lar to each other.

The within -subjects and the pseudo between -subjects analyses suggest that it is
the Supportive tutor that yi elds the highest learning gains. Hence, we attempted to
replicate this finding in a between subjects design with a larger sample of students.



Between -subjects experimentc  omparin g Supportive and Regular t utors . We
conducted an experiment to evaluate the effectiveness of the Supportive AutoTutor
when compared to the Regular AutoTutor [D'Mello, Lehman, Sullins, Daigle, Combs,
Vogt, Perkins and Graesser 2010d ]. This experiment did not include the S hakeup
AutoTutor, because the previous within -subjects experiment indicated that the
Supportive Tutor consistently outperformed the Shakeup Tutor. Our prediction was

that learning gains should be superior for the Supportive AutoTutor over the Regular
AutoT utor.

The experiment had a between -subjects design in which 84 undergraduate
students from a university in the U.S.  were randomly assigned to either the Regular
or the Supportive AutoTutor.  Student s in each condition completed a pretest on three
computer literacy topics (hardware, operating systems, versus the Internet) . They
then completed two training sessions with the same version of AutoTutor, but on two
different computer literacy topics. Students did not receive tutoring f or the third
computer literacy topic. They then completed a different posttest on all three topics.
Proportional learning gains for the two topics they were tutored on served as a
measure of learning, whereas gains for the topic that they did not receive t utoring on
were used to assess knowledge transfer.

Student s were assigned to either a low or a high prior -knowledge group based on
a median split on their pretest scores. The analyses consisted of three 2 (tutor:
regular vs. supportive) x 2 (prior knowledge: low vs. high) between -subjects ANOVAs
for learning gains in each session and for knowledge transfer.

The tutor x prior -knowledge interaction was significant  for Session 1 (see Figure
6). There was no difference in learning gains across tutors for the low prior -
knowledge students (d = .017). However, there was a significant and substantial
effect (d = .824) in favo r of the Regular tutor for students with high prior -knowledge.

There was a different pattern in learning gains for studentsd second AutoTutor
session. There was a significant tutor x prior -knowledge interaction. Low prior -
knowledge students learn ed signifi cantly more from the Supportive AutoTutor than
the Regular tutor ( d =.713). Although there was no significant difference in learning
gains across tutors for the high prior knowledge students, there was a small to
medium sized effect in favor of the Regular tutor ( d =.384) (see Figure 6).

There was a nonsignificant tutor x prior -knowledge interaction for transfer scores.
However, there was a medium sized effect ( d = .583) in favor of the Supportive tutor
for t he low prior -knowledge students (see Figure 6). It should also be noted that the
high prior -knowledge students achieved | ower transfer scores than the low prior -
knowledge students irrespective of whether they interacted with either the
Supportive or the Regular AutoTutor. This can be attributed to the fact that
AutoTutor is less effective in promoting learnin g for students w ith high domain
knowledge (as mentioned in Section 4.4).

Session 1 Session 2 Transfer
03
06 06 sup 02 Q
@
Sup
05 g 05 N 01 N\
04 04 — g N
R ~ 1] N
03 o 03 et N Reg ™\
~ ~ -0.1
0.2 Sup > 0.2 [}
~
01 O o -0.2
0 ]
Low High Low High Low High
Prior Knowledge Prior Knowled ge Prior Knowled ge

Figure 6. Interactions between prior knowledge (low vs. high) and  version of
AutoTutor (Regular vs. Supportive). Y-axis is proportional learning gains.



6.3 Summary of Findings, Limitations, and Future Directions

The results of this experiment support a number of conclusions regarding the
effectiveness of affect-sensitivity in promoting  deep learning gains. First, the
Supportive AutoTut or was more effective than the R egular tutor for low -domain
knowledge students in the second session, but not the first session.  Therefore, it is
inappropriate for the tutor to be supportive to these students before there has been
enough context to show there are problems. Simply put, dondt be suppo
students need support! Second, the students with more know ledge never benefited
from the S upportive AutoTutor. These student s dnmotiofa suppate
but rather they need to go directly to the content. Hence, there appears to be a
liability to quick support and empathy comparedto no ~ emotional sensitivity

The central message is that there is an appropriate time for a particular emot ion
exhibited by AutoTutor. Just as there i s [Shwartziand 8rarfsford
199g], there is a 0t Wmeould imagineeantmjedtory gvhese low -

knowledge students start out with a non -emotional Regular tutor until they see there
are problems. Then after that they need support, as manifested in Session 2 of our
study. Regarding high -knowledge students, they are perfectly fine working on
content for an hour or more and may get irritated with an Au toTutor showing care.
But later on there may be a time when they want a Shake up AutoTutor for
stimulation, challenge, and a playful exchange. Or maybe even a Supportive
AutoTutor. These are all plausible hypotheses to explore for future research.

It is als o important to consider the feasibility of deploying affect detectors that
require customized and often expensive hardware in classroom settings. The
Affective AutoTutor used a combination of conversational cues, facial -feature
tracking, and posture to det ect student affect. Scalability is not a concern for the
context-based affect detector because the use of conversational cues and other
discourse constituents requires no additional sensors . Face-based detection is also
feasible in the classroom because th e only hardware requirement is a web cam
However, the posture tracker (BPMS) is expensive and requires specialized hardware
and software, so it is not ideal for classroom deployment. Fortunately, a number of
cost-effect alternatives to the BPMS exit, there by making real -world posture tracking
viable . Some of these include pressure mats that are constructed in -house [Arroyo et
al. 2009], Wii Fit Balance Boards E [Olney and D'Mello 2010 ], and motion filtering

techniques to assess body movements from live video [D6 Me | | o e} Futle.

research will be needed to pursue these and other alterna tives, although it appears
that the most scalable option would probably involve sensor -free affect detection,
where predictive assessments of stu dent affect using only context.

7. OTHER VARIANTS AND EVOLVING VERSIONS OF AUTOTUTOR

Our discussion so far has foc used on the basic AutoTutor system as well as recent
advancements to endow AutoTutor with affect sensing capabilities. We have also
developed several other versions of AutoTutor in add ition to these major research
thrusts. This section briefly discusses so me of these versions by distinguishing
systems that have already been implemented and tested ( i.e., implemented systems)
from new systems that are currently in various phases of implementation and testing
(evolving systems).

7.1 Variants of AutoTutor that have been Implemented and Tested

Versions of AutoTutor have been designed to incorporate particular pedagogical goals
and cover different subject matters. Some of these are briefly discussed below.

Versions that vary features of the  AutoTutor agent . Most versions of AutoTutor
have an animated conve rsational agent with synthesized speech, a small humber of
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facial expressions, and some rudimentary hand and head gestures. These full
versions have been compared to versions with voice only, text only, and  various
combinations of modalities in pr esfgmessend
al. 2003]. The full animated conversational agent has shown advantages in
promoting learning over alternative modalities under some conditions, particularly

for deeper levels of learning [Atkinson 2002 ; Moreno et al. 2001 ]. However, available
research on AutoTutor suggests that it i s
that has the biggest impact on learning gains  [Graesser, Moreno, Marineau, Adcock,
Olney and Person 2003 ].

Speech -enabled AutoTutor. The traditional AutoTutor system uses synthesized
speech to speak the content of its dialogue moves. However, students type their
responses to t he thenrellycauding a misnaateh betweers tutor a nd
student input modalities. We developed a new version of AutoTutor that supported
spoken input. Students spoke their responses in the new speech -enabled AutoTutor |,
and the commercially available Dragon Naturally Speaking E program was used for
automatic speech recognition [D'Mello et al. 2011 ; D'Mello, King and Graesser
2010b].

Comparisons of the speech-enabled version of AutoTutor to the traditional typed -
input version yielded significant learning independent of input modality (i.e., spoken
vs. typed). There was no significant difference across modalities despite considerable
automatic speech recognition errors ( word error rate = .46) and these errors were not
correlated with learning gains. The fact that performance did not degrade in light of
speech recognition errors is testament o f the robustness of
langua ge processing capabilities.

AutoTutor -3D. We developed a version of AutoTutor, called AutoTutor -3D, that
guides student s on using interactive simulations of physics microworlds [Graesser,
Chipman, Haynes and O Iney 2005; Jackson and Graesser 2006]. For each of the
physics problems, we developed an interactive simulation world with people, vehicles,
objects, and the spatial setting associated with the problem. Figure 7 shows an
example of one of these physics microworlds on a problem that involves a rear -end
collision of a truck with a car. The student modifies parameters of the situation (e.g.,
mass of vehicles, speed of vehicles, distance between vehicles) and then asks the
system to simulate what will happen.  Students are also prompted to describe what
they see. Their actions and descriptions are evaluated with respect to covering the
expectations or matching mi sconceptions. AutoTutor manages the dialogue with
hints and suggestions that scaffold the learning process with dialogue. The
simulations were effective in increasing learning but only for those students who
invested sufficient effort to run the simulation  s.

AutoTutor with enhanced feedback . We created different versions of AutoTutor
in order to manipulate the feedback that the college students received during their
interactions with the tutor [Jackson and Graesser 2007]. Students received either
content feedback (e.g., highlighting important words after students type them in),
progress feedback (e.g., displaying points on their performance) feedback, both, or
neither. An experiment comparing the effects of these versions was quite
illuminating in a number of respects. Altho ugh students learned in all feedback
conditions, it was the content feedback that had a greater impact on learning than
the progress feedback. We were surprised
these systems were inversely related to the amount t hey learned. Indeed, the mean
ratings of nearly all of the scales of student perceptions were more positive in those
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conditions that yielded the least amount of learning. Simply put, deep learning is not
fun.

Fle Edt Sesson Phons Help

When a car without headrests on the seats is struck from behind, the passengers often suffer neck injuries.
Why do passengers get neck injuries in this situation?

Bodys Velocify
| Heads Velocity

<
K] fw] |
<

| Log of previous responses: Enter your response here:

Tutor: When a car without headrests on the seats is
struck from behind, the passengers often suffer
neck injuries. Why do passengers get neck

injuries in this situation?

Student: People get hurt because they get whiplash.
Since there is nothing behind the head to support it,
the neck snaps back as the body is pushed forward.

Tutor: Can you add to that?

Figure 7. AutoTut or-3D with simulations

7.2 New and Evolving Systems based on the AutoTutor Technology

Aspects of the AutoTutor system are finding use in a number of new technologies
that we and our collaborators are developing. Some of these systems are not
AutoTutor per se, but are inspired by AutoTutor or incorporate some aspect of
AutoTutor. These are briefly described below along with the name of the chief
architect of each system who we are collaborating with.

AutoTutor -Lite (Xiangen Hu, University of Memphis ). In stark contrast to the
computationally intensive AutoTutor -3D system, there is a minimalistic version of
AutoTutor called AutoTutor -Lite [Hu et al. 2009 ]. AutoTutor -Lite includes the
AutoTutor -style interface and interactio n (animated agent and natural language
conversation), but with a lightweight language analyzer and dialogue manager.
AutoTutor -Lite has excellent authoring tools that lesson planners and instructors can
use, even when they have minimal computer skills. ~ Mor eover, AutoTutor -Lite can be
applied to PowerPoint content on any verbal subject matter, is easily customizable ,
and can be integrated into e -learning environments on the web as well as the

desktop. One can i magine an i ndustentignal t h at

elLearning content that is widely available.

Operation ARIES (Keith Millis , Northern lllinois Universit y) ARIES (Acquiring
Research Investigative and Evaluative Skills) [Cai et al. 2009 ; Millis et al. 2011 ]
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teaches scientific reasoning and critical thinking  skills with two animated
pedagogical agents. One agent in ARIES, called the guide -agent, is an expert on
scientific inquiry and serves as a knowledgeable tutor.  The other agent is a fellow
student that exhibits low knowledge or flawed knowle  dge that the guide agent and
human student will hopefully correct. ~ An imperfect agent may indeed help learning.
This notion has been pursued in the Teachable Agent research of Biswas and
colleagues [Biswas et al. 2005 ]. Human students attempt to help a fellow student
agent who has misconceptions and incomplete knowledge. The process of the human
student trying to help the cyber student actually ends up facilitating learning in the
human. In ARIES, a case study of an experiment is presented which may or may not
have a number of flaws with respect to scientific methodology. A 3-way conversation
transpires (called a trialog ue) among the human student, the expert agent, and the
student agent. ARIES facilitat es learning compared to normal training methods for
scientific critical thinkin g [Millis, Forsyth, Butler, Wallace, Graesser and Halpern
2011].

Deep Tutor (Vasile Rus, University of Memphis ). We are working on systems that
analyze language and discourse at deeper levels. Researchers can move beyond LSA
and regular expressions and into more structure -sensitive processing and semantic
decomposition [Rus and Graesser 2007; Rus et al. 2008]. Some versions of the
dialogue manager module have lists of production rules and finit e-state grammars ,
but also move to new levels into the realm of recursive, complex planning and
multiple -goal agendas. This approach of deeper natural language processing and
discourse management is currently being developed and tested in the area of physi cs
via DeepTutor

Guru Tutor (Andrew Olney, University of Memphis ). AutoTutor was modeled after
novice human tutors and extensions that had more ideal tutoring mechanisms.  The
human tutors that served as guides were untrained in tutoring skills and had
moderate domain knowledge; they were peer tutors, cross -age tutors, or
paraprofessionals, but rarely were accomplished professionals or expert tutors. Since
there is some evidence that expert tutors are more effect ive in promoting learning
gains than their unaccomplished counterparts  [Bloom 1984 ; Cohen, Kulik and Kulik
1982], we are currently in the process of building a tutoring system (Guru) for high
school biology based on the tactics, actions, and dialogue of expert human tutors. The
pedagogical and motivational strategies of Gu ru are informed by a detailed
computational model of expert human tutoring [D'Mello, Hays, Williams, Cade,
Brown and Olney 2010a ; D'Mello, Lehman and Person 2010c ; D'Mello, Olney and
Person 2010e]. In addition to encompassing some of the ideal tutoring strategies of
the expert tutors, Guru also includes deeper natural language understanding
capabilities, dynamic conversational m anagement, and an engaging agent embedded
in a 3D gaming world.

Meta Tutor (Roger Azevedo, McGill University ). While AutoTutor and Affective

AutoTutor f ocus on student sd cpoogessestMeta®utordasnad IT&Rf f ect i ve

t hat tracks, model s, and regul ates students& meta
learning of complex scientific content (e.g., functioning of the circulatory system)

within h ypermedia environments [Azevedo et al. 2008]. MetaTutor was based on

extensive research documenting the importance of metacognitive processes such as

monitoring, goal setting, and planning during learning [Azevedo 2009].

Unfortunately, students rarely deploy these metacognitive processes productively

during unsca ffolded learning with hypermedia [Azevedo et al. 2005]. Humans who

are trained as external regulation agents can be quite effective in helping students



deploy key metacognitive and s elf regulated learning processes in a manner that is
contextually coupled with the learni ng material and environment . Therefore,
MetaTutor was designed to automate the role of an externally regulating a gent while
students learn with h ypermedia. Over time, MetaTutor is designed to fade into the
background in an attempt to get studentsto  eventually regulate their own learning.

AutoMentor  (David Shaffer, University of Wisconsin -Madison ). AutoMentor will be
an automated virtual mentor that provides guidance to students as they interact in
groups in serious games. AutoMentor to some extent builds on AutoTutor, however,
while AutoTutor manages one -on-one tutorial dialogue, AutoMentor will interact
with groups of players in the serious game.  AutoMentor will be integrated in the
serious game on urban planning called Land Science. The game helps students
understand the kinds of problems and problem solv ing that socially valued
professions routinely engage in. For example, how is the development of cities and
suburbs influenced by zoning, roads, parks, housing, and economic investment?
What developments in science and high -quality information sources nee d to be
communicated in justifications of decisions? Currently, a human mentor can
broadcast suggestions to the student players simultaneously whenever the mentor
deems it appropriate to send a message. The idea is to replace the suggestions
generatedbyt he human with AutoMentords sugges

8. CONCLUDING REMARKS

We presented AutoTutor, Affective AutoTutor , and existing and evolving versions of
these systems as educational technologies that exemplify some of the exciting
technologies emerging from the Int elligent Interactive Systems community.  These
21st century systems offer considerable advantages over the 20t century computer -
based training systems. They are also improvements over many  of the 1990s ITSs
t hat i mpressively ragnitivd  estdtes, swhile dlargely sighoring
motivation and emotion. The ability to  yield impressive learning gains that match
human tutors by modeling and respondingto student sd& cogniti
motivational processes is a major contribution of these systems. Additional
refinements of these systems , as well as some of the newer technologies , such as
AutoTutor -Lite, GuruTutor, DeepTutor, ARIES, MetaTutor, and AutoMentor, are
expected to yield even greater improvements in engagement, self -efficacy, task
persist ence, and motivation.

Another impressive achievement of these systems, particularly the dialogue  -based
tutors, is that they are redefining the human  -computer interaction paradigm. Most
(but not all) of the 20 th century systems required h umans to communicat e with
computers through windows, icons, menus, and pointing devices (i.e., the WIMP
paradigm). But humans have always communicate d with each other through speech
and a host of non-verbal cues such as facial expressions, paralinguistic features of
speech, oculesics (eye contact), posture, and gesture. In addition to enhancing the
content of the message, these communicative channels provide information regarding
the cognitive states, affective states, motivation levels, and social dynami cs of the
communicators. In thei r endeavor to support speech input, natural language
dialogues, affect sensing, gaze tracking, and embodied conversational agents, the
systems developed by us and our colleagues are pushing the envelope by blurring the
boundary between human -human and human -computer interactions.

Although the enhanced interactivity of the 21 st century systems is impressive, it is
always important to realize that content reigns supreme for learning . When it comes
to deep learning, the medium is not the message, bu t the message is the message.
Therefore, advances in intelligence and interactivity of educational technologies
should always be accompanied by advances in the content-based learning sciences.
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Just as it takes a village to raise a child, it takes an interdisciplinary milieu of
researchers encompassing computer science, engineering , psychology, linguistics, and
education to develop many of the advanced learning technologies including but not
limited to AutoTutor and  Affective AutoTutor . And it will tak e even broader teams of
interdisciplinary  minds to position us towards the next set of discoveries and
innovations that will undoubtedly emerge from the field of interactive intelligent
systems over the next decade.

ELECTRONIC APPENDIX
The electronic appen dix for this article can be accessed in the ACM Digital Library.
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