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Sentences and spoken utterances are nearly always expressed in the context of a 

text or conversation.  It is therefore important to understand the mechanisms that drive 

the comprehension and production of connected discourse.  In this chapter we will use 

the term discourse as a covering term for text, monologues, dialogues, and multiparty 

conversations.  Our goal is to understand the structures, representations, strategies, and 

processes that underlie the comprehension and production of discourse.  There is a field, 

called discourse processes, that is devoted to scientific investigations of these 

mechanisms.  It has its own journal (Discourse Processes), affiliated society (Society for 

Text and Discourse), and its own Handbook of Discourse Processes (Graesser, 

Gernsbacher, & Goldman, 2003).    

This chapter focuses on computational models of discourse processing.  There are 

two senses of computation, both relevant to this chapter.  The first sense refers to the 

architectures and algorithms in models of human discourse processing.  The second sense 

refers to computer implementations of components of these psychological models.  Some 

psychological components can be programmed in computers, whereas others are 

currently beyond the immediate technological horizon.  We hope to clarify the 

boundaries of what is technically feasible on computers, knowing full well that the 

boundaries change yearly. 

There are many types of discourse, or what some researchers call genre (category 

in French), registers, or simply discourse categories.  Discourse typologies vary in grain 

size and theoretical slant, with some researchers viewing the discourse landscape as a set 

of fuzzy categories, others a structured ontological hierarchy, and yet others viewing it as 

a multidimensional space (Biber, 1988).  There are prototypical discourse categories in 
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the American culture, such as folktales, scientific journal articles, jokes told in stand-up 

comedy, and one-on-one tutoring.  These four examples would funnel into more 

superordinate classes that might be labeled as narrative, exposition, monologue, and 

dialogue, respectively.  Of course, there will always be blends, hybrids, and borderline 

cases, such as a faculty member chatting with a student about a funny story involving an 

experiment that failed. Whether there is a set of prototypical discourse categories is a 

lively topic of debate. 

This chapter will concentrate on two forms of discourse: text comprehension and 

two-party dialogue.  We acknowledge that there are other important forms of discourse, 

such as text production, comprehension and production of spoken monologues, and 

multi-party conversations with three or more participants.  However, most research has 

been conducted on text comprehension and two-party dialogue.   

Computational Models of Text Comprehension 

Levels of representation 

 Multiple levels of representation are constructed when a text is comprehended.  

Five of these levels are the surface code, the propositional textbase, the situation model, 

the text genre, and the pragmatic communicative context (van Dijk & Kintsch, 1983).  

Suppose, for illustration, that the following excerpt about a corporation was read in a 

newspaper:  

When the board met on Friday, they discovered they were bankrupt.  They needed 

to take some action, so they fired the president.   

The surface code preserves the exact wording and syntax of the sentences.  The textbase 

contains explicit propositions in the text in a stripped down, logical form that preserves 
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the meaning but not the surface code.   The first sentence would have the following 

propositions, a theoretical construct that will be elaborated shortly: 

PROP 1:  meet (board, TIME = Friday) 

PROP 2:  discover (board, PROP 3) 

PROP 3:  bankrupt (corporation) 

PROP 4:  when (PROP 1, PROP 2) 

The situation model (sometimes called mental model) is the referential content or 

microworld that the text is describing.  This would include the people, objects, spatial 

setting, actions, events, plans, thoughts and emotions of people and other referential 

content in a news story, as well as the world knowledge recruited to interpret this 

contextually specific content.  The text genre is the type of discourse, in this case a news 

story about a corporation.  The pragmatic communicative context is the implicit dialogue 

between the author (story writer, editor) and the reader (a public citizen).  The story was 

presumably written to convey some point to the reader, such as the particular corporation 

is on the brink of collapse.  The public, of course, loves disaster stories.   

 Discourse context and world knowledge are extremely important in guiding the 

construction of these levels of representation.  The referents and propositional content of 

the textbase would not be composed correctly if one relied on the local sentence context. 

For example, the they in the phrase they were bankrupt refers to the corporation rather 

than the board, yet models that assign referents to pronoun anaphors on the basis of 

sentence syntax would make just the opposite assignment.  The president refers to the 

president of the board, not the president of the United States, even though the U.S. 

president is shared knowledge among U.S. citizens and the modifying determiner is 



                                                        Graesser, McNamara, & Rus   5 

definite (the).   These assignments are rather subtle and require a fine-grained analysis of 

context and world knowledge.  This subtlety and complexity become more salient as soon 

as a researcher tries to get computers to perform these computations. 

Researchers are not entirely in agreement that the explicit discourse can be 

segmented into a structured set of propositions.  One problem with the construct of a 

proposition is that researchers from different fields (i.e., artificial intelligence, logic, 

linguistics, and psychology) do not entirely agree on the format and formal constraints of 

propositions.  In the field of discourse psychology, a proposition refers to a state, event, 

or action that may or may not have a truth value with respect to the referential situation 

model; this contrasts with propositional calculus theories of traditional logic where a truth 

value must be assigned and the meaning of the proposition is unimportant.  In 

psychology, each proposition contains a predicate (e.g., main verb, adjective, connective) 

and one or more arguments (e.g., nouns, embedded propositions).  In most notational 

systems, the arguments are placed within the parentheses, whereas the predicates are 

outside of the parentheses.  Each argument has a functional role, such as agent, patient, 

object, time, or location, although the theoretical set of functional roles differs somewhat 

among the fields of psychology, linguistics, artificial intelligence, and computational 

linguistics (Allen, 1995; Kintsch, 1998; Van Dijk & Kintsch, 1983).  Discourse 

psychologists sometimes ignore the role of quantifiers (one, some, all) when 

propositional representations are constructed, whereas quantifiers are explicitly captured 

in the predicate calculus representations (called first order logic) of artificial intelligence, 

computational linguistics, and formal logic.  There are yet other differences among fields 
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that pertain to structural composition and the epistemological status of propositions (e.g., 

facts, beliefs, wants), far too many to enumerate here. 

There would be tremendous advantages to having a computational model that 

translates the language of discourse into the logical forms in logic or AI (such as first-

order predicate calculus) or the deep structures in standard linguistics.  One advantage of 

a logical form is that well established computational procedures can execute theorem 

proving and inference generation in an elegant manner.  Another advantage is that 

discourse structures and world knowledge structures would have a uniform representation 

that could be systematically aligned, compared, and integrated.  Unfortunately, there are 

two serious challenges about this neat and tidy picture.  The first challenge is that 

researchers in AI and computational linguistics have not been able to develop a computer 

program that can reliably translate discourse constituents into a logical form or deep 

structure representations, even in large-scale evaluations that aspire to such a goal (Rus, 

2004).  The vast majority of today’s syntactic parsers, such as Apple Pie (Sekine & 

Grishman, 1995) and the Charniak parser (2000) construct tree structures that capture 

surface structure composition rather than deep structures or logical forms.   The second 

challenge is that it may not be necessary, psychologically, to fuss with the construction of 

a propositional textbase.  Instead, the words and other linguistic signals in the surface 

code might provide a direct route to the situation model and other meaning 

representations (Zwaan & Radvansky, 1998).  Of course, those who dismiss the construct 

of a proposition need to have a principled way of specifying meaning representations and 

how they systematically get constructed. As yet, an alternative to propositions has not 
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been developed, apart from a few proposals that can handle only a small corpus of 

examples.   

World knowledge 

A computational model of discourse comprehension must make some 

commitments to the representation of world knowledge.  World knowledge is needed to 

guide the interpretation of explicit information and also to furnish plausible inferences 

(Graesser, Singer, & Trabasso, 1994; Kintsch, 1998).  Three theoretical frameworks for 

handling world knowledge are conceptual graph structures (Lehmann, 1992; Schank & 

Reisbeck, 1982; Sowa, 1983), high dimensional semantic spaces (Landauer, Foltz, & 

Laham, 1998; Landauer, McNamara, Simon, & Kintsch, in press), and embodied 

representations (Glenberg, 1997).  Conceptual graph structures (CGS’s) contain a set of 

nodes (referring to noun-like concepts or propositions) that are interrelated by labeled, 

directed arcs, such as Is-a, Has-as-parts, Cause, and Reason.  The referent of a CGS may 

include a family of related concepts (such a semantic network for animals), a package of 

nodes that capture a specific experience (e.g., a previous experience or text that is read), 

or a generic package of knowledge, such as a script on how people dine in restaurants, a 

stereotype about professors, or a schema about corporate bankruptcy (Schank & 

Reisbeck, 1982).  During the course of comprehending a particular text, a family of these 

background CGS’s get activated and guide the interpretation of sentences and the 

generation of inferences.  The CGS approach was the dominant approach to representing 

world knowledge between the late 1970’s to late 1990’s.   

One salient limitation of the CGS’s is that the researcher has to construct the 

content and relations by hand.  Progress on automatic construction of these structures 
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through machine learning algorithms and theoretical formal systems has not scaled up to 

handling a large corpus of texts, although there were some notable successes in inducing 

noun concept taxonomies in semantic networks (Hearst, 1992; Stevenson, 2002) and case 

hierarchies in case-based reasoning (Veloso & Carbonell, 1993).    

In the mid-1990’s the zeitgeist shifted from handcrafted structures to high 

dimensional conceptual spaces that accommodate the constraints of a large corpus of 

texts.  Notable examples of statistical, corpus-based approaches to analyzing the world 

knowledge that underlies discourse are the Hyperspace Analog to Language (Burgess, 

Livesay, & Lund, 1998), Latent Semantic Analysis (Kintsch, 1998; Landauer, Foltz, & 

Laham, 1998; Landauder et al. in press), and the Linguistic Inquiry Word Count 

(Pennebaker & Francis, 1999).  LSA uses a statistical method called “singular value 

decomposition” (SVD) to reduce a large Word-by-Document co-occurrence matrix to 

approximately 100-500 functional dimensions. The Word-by-Document co-occurrence 

matrix is simply a record of the number of times word Wi occurs in document Dj.  A 

document may be defined as a sentence, paragraph, or section of an article.  Each word, 

sentence, or text ends up being a weighted vector on the K dimensions.  The “match” 

(i.e., similarity in meaning, conceptual relatedness) between two unordered bags of words 

(single words, sentences, or texts) is computed as a geometric cosine between the two 

vectors, with values ranging from -1 to 1. LSA-based technology is currently being used 

within a number of applications, such as essay graders that grade essays as reliably as 

experts in English composition and automated tutors that give feedback equivalent to 

human tutors (see chapters in Landauer et al., in press). 



                                                        Graesser, McNamara, & Rus   9 

One limitation in both CGS’s and LSA is that they gloss over many of the fine 

details of perceptual experiences and motor activity.  CGS’s are symbolic and LSA is a 

statistical representation.  In contrast, the embodied framework grounds discourse in 

sensori-motor experience and constraints of the body as the body interacts with a 

particular world (Glenberg, 1997; Roy, 2005).  It should be acknowledged that some 

structural theories ground the symbolic nodes (concepts, propositions) in perception and 

action, and there are LSA-based models that are capable of representing sensori-motor 

procedures with a suitable corpus.  However, an embodied framework is arguably needed 

to go the full distance in handling references to perception, action, deixis, and 

experiences that ground symbols. Unfortunately, no one has built a model on a computer 

that is capable of generating fully embodied representations from naturalistic text and of 

inducing embodied representations of world knowledge from experiences.  There are 

robotic systems that ground words and simple spoken utterances in perception and action 

(Roy, 2005), but there are no systems that take text input and automatically produce a 

representation that is even close to an embodied representation.  This is one challenge for 

future research. 

Cohesion and coherence    

Sentences and clauses in connected discourse need to be coherently related in 

order to convey the desired message to the reader.  A distinction is often made between 

cohesion and coherence (Graesser, McNamara, Louwerse, & Cai, 2004; van Dijk & 

Kintsch, 1983).  Cohesion is an objective property of the explicit text.  Explicit words, 

phrases, sentences, and linguistic features guide the reader in interpreting the substantive 

ideas in the text, in connecting ideas with other ideas, and in connecting ideas to higher 
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level global units (e.g., topics, themes). Coherence refers to the quality of the mental 

representation constructed by the comprehender.  Cohesive devices cue the reader how to 

construct a coherent representation in the mind; how and whether this happens, however, 

depends on the skills and knowledge the reader brings to the situation (McNamara & 

Kintsch, 1996).  For example, if the reader has adequate world knowledge about the 

subject matter or if there are adequate linguistic and discourse cues, then the reader is 

likely to form a coherent mental representation of the text. Readers follow an underlying 

pragmatic assumption that texts are coherent and expend effort to construct coherent 

representations while reading well constructed texts.  However, if text is very poorly 

composed, their efforts fail so they give up trying and attribute problems to either the text 

or their own deficits in world knowledge.   

Coh-Metrix is a computer tool available on the web that analyzes texts on 

multiple levels of cohesion, as well as other levels of language 

(http://cohmetrix.memphis.edu, Graesser, McNamara, Louwerse, & Cai, 2004).  Coh-

Metrix has the potential to replace standard readability formulas, such as Flesch-Kincaid 

Grade Level (Klare, 1974-1975), which rely exclusively on word length and sentence 

length to scale texts on readability. The user of Coh-Metrix enters a text into the web site 

and it prints out measures of the text on 44 metrics that span different levels of discourse 

and language.  Coh-Metrix 1.3 has measures in the following categories: (1) co-

referential cohesion, such as nouns referring to other nouns and phrases; (2) causal 

cohesion; (3) density of different categories of connectives and logical operators; (4) 

LSA-based conceptual cohesion; (5) type-token ratio; (6) readability measures; (7) word 

frequency measures; (8) density of words in different parts of speech; (9) other word 
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characteristics, such as concreteness, polysemy, and age of acquisition; (10) density of 

noun-phrases; and (11) syntactic complexity.  Coh-Metrix integrates lexicons, pattern 

classifiers, part-of-speech taggers, syntactic parsers, shallow semantic interpreters, LSA, 

and other components that have been developed in the field of computational linguistics 

(Allen, 1995; Jurafsky & Martin, 2000). For example, Coh-Metrix incorporates several 

lexicons, including CELEX (Baayen, Piepenbrock, & Van Rijn, 1993), WordNet 

(Fellbaum, 1998), and the MRC Psycholinguistic Database (Coltheart, 1981). These 

lexicons allow us to measure each word on number of syllables, abstractness, imagery, 

ambiguity, frequency of usage, age of acquisition, number of senses (meanings), and 

dozens of other dimensions. There is a part-of-speech “tagger” (Brill, 1995) that assigns 

each word to one of 56 syntactic classes; it uses context to assign the most likely class 

when a word can be assigned more than one part of speech. There is a syntactic parser 

that assigns syntactic tree structures to sentences and measures them on syntactic 

complexity (Sekine & Grishman, 1995).  The LSA module measures the conceptual 

similarity between sentences, paragraphs, and texts on the basis of world knowledge.   

 Coh-Metrix 2.0 has been expanded to incorporate more levels of cohesion in 

discourse.  It computes the referents of pronouns on the basis of syntactic rules, semantic 

fit, and discourse pragmatics by some existing algorithms proposed by Mitkov (1998) 

and Lappin and Lease (1994).  It also segregates different dimensions of the situation 

model, including those of agency, temporal, spatial, causal, intentional, and logical 

cohesion.  As in several models in discourse psychology, these dimensions were included 

in Zwaan and Radvansky’s (1998) event indexing model; their review of the 

psychological literature confirmed that incoming sentences take more time to read to the 
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extent there are coherence gaps in agency, temporality, spatiality, intentionality (i.e., 

goals, plans, actions of agents), and causality.   

 To compute intentionality, Coh-Metrix has an algorithm that identifies actions 

and goals by combining syntactic information with information from the WordNet 

database (Fellbaum, 1998). For example, intentional actions and goals have main verbs 

that are either causal or intentional (as defined by a cluster of lexicographical categories 

in WordNet) and animate or human subject nouns (e.g., in the girl bought a car, the verb 

buy is intentional and the subject noun girl is human). A text is cohesive on the 

intentional dimension to the extent that there are more intentional linguistic particles that 

link actions and goals, such as conjunctions and other forms of connectives (e.g., in order 

to, so that).  

Coh-Metrix also has measures on structural cohesion, including syntactic 

similarity of sentences, ease of identifying topic sentences, genre uniformity, document 

headings, and given-new information contrasts.  One of the most influential analyses of 

genre has been that of Biber (1988), who used factor analysis to classify a large corpus of 

texts on the basis of 67 features of language and discourse. Coh-Metrix 2.0 has automated 

62 out of 67 of these features so it can compute the extent to which a text fits different 

genres (such as narrative, science, versus history texts).  Associated with each genre is a 

diagnostic set of connectives, discourse markers, and other signaling devices. 

Discriminant function analyses identify the features that diagnostically predict whether 

text T is in genre/class G. Texts can thereby be scaled on global genre cohesion in two 

ways. First, a text has higher genre cohesion when it cleanly fits into one prototypical 

genre/class G (as measured by an inverse of the classification entropy score). Second, 
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there is higher global cohesion when there is a higher density of diagnostic features 

associated with the dominant genre/class G.   

Another analysis of structure contrasts new from given information by segregating 

constituents that are introduced for the first time in the text from references to previous 

text constituents and from information that is in the common ground (shared knowledge) 

of speech participants (Prince, 1981).  Whereas previous analytical treatments of the 

given-new distinction have been compositional and symbolic, Coh-Metrix 2.0 uses an 

LSA algorithm to segregate new versus given information as sentences are 

comprehended, one by one. 

Computational models of text comprehension in humans 

Discourse psychologists have developed a number of models that simulate how 

humans comprehend text.  Among these are the Collaborative Action-based Production 

System (CAPS) Reader model (Just & Carpenter, 1992), the Construction-Integration 

model (Kintsch, 1998), the constructivist model (Graesser, Singer, & Trabasso, 1994), 

and the landscape model (Van den Broek, Virtue, Everson, Tzeng, & Sung, 2002). The 

architectures of these models go beyond simple finite state automata that have a small 

finite set of states (categories) and a small set of transition matrices (one per process) that 

specify the likelihood that a theoretical entity will change states.  Rather, they are 

complex dynamical models with a very large or infinite state space that can evolve in 

complex and sometimes chaotic trajectories.  It is impossible to sufficiently capture these 

models with a set of linear equations or with a set of simple rules.  This subsection will 

describe the CAPS/Reader and Construction-Integration (CI) model. 



                                                        Graesser, McNamara, & Rus   14 

Just and Carpenter’s (1992) CAPS/Reader model directs comprehension with a 

large set of production rules.  The CAPS/Reader model is a hybrid between a production 

system and a connectionist computational architecture. Each of the production rules (a) 

scan explicit text input, (b) govern the operation of working memory, (c) change 

activation values of information in working memory and long-term memory, and (d) 

perform other cognitive or behavioral actions.  Production rules have an “If <state>, then 

<action>” form, but these rules are probabilistic, with activation values and thresholds, 

rather than being brittle.  If the contents of working memory has some state S that is 

activated to a degree that meets or exceeds some threshold T, then action A is executed 

by spreading activation to one or more other information units in working memory, long-

term memory, or response output. A state slot may be arbitrarily complex, often 

consisting of several sub-states that capture a pattern of language or discourse.  For 

example, consider a possible rule that would identify intentional actions: If the subject 

noun is animate and the main verb is causal or intentional, then activation is spread to the 

proposition category of intentional action.  The proposition would be classified as 

intentional only probabilistically, because other activated production rules may spread 

activation in a fashion that does not converge on the category of intentional action.  All of 

the production rules are evaluated in parallel within in each cycle of the production 

system, and multiple rules may get activated within each cycle.  The researcher can 

therefore trace the activation of information units (nodes) in the text, working memory, 

and long-term memory as a function of the cycles of production rules that get activated.  

Just and Carpenter have reported these profiles of nodal activation can predict patterns of 
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reading times for individual words, eye tracking behavior, and memory for text 

constituents. 

Kintsch’s (1998) CI model directs comprehension with a connectionist network.  

As text is read, sentence by sentence (or alternatively, clauses by clause), a set of word 

concept and proposition nodes are activated (constructed).  Some nodes match 

constituents in the explicit text whereas others are activated inferentially by world 

knowledge.  The activation of each node fluctuates systematically during the course of 

comprehension, sentence by sentence.  When any given sentence S (or clause) is 

comprehended, the set of activated nodes include (a) N explicit and inference nodes 

affiliated with S and (b) M nodes that are held over in working memory from the 

previous sentence S-1 by virtue of meeting some threshold of activation.  As a 

consequence, there are N+M nodes to reckon with while comprehending sentence S.   

These N+M nodes are fully connected to each other in a weight space.  The set of weights 

in the resulting (N+M) by (N+M) connectivity matrix specifies the extent to which each 

node activates or inhibits the activation of each of the other N+M nodes.  The values of 

the weights in the connectivity matrix are theoretically motivated by multiple levels of 

language and discourse.  For example, if two word nodes (A and B) are closely related in 

a syntactic parse, they would have a high positive weight, whereas if two propositions 

contradict each other, they would have a high negative weight.      

The dynamic process of comprehending sentence S has a two stage process, 

namely construction and integration.  During construction, the N+M nodes are activated 

and there is an initial activation vector for the set of nodes (a1, a2, …aN+M).  The 

connectivity matrix then operates on this initial node activation vector in multiple 
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activation cycles until there is a settling of the node activations to a new final stable 

activation profile for the N+M nodes. At that point, integration of the nodes has been 

achieved.  Mathematically, this is accomplished by the initial activation vector being 

multiplied by the same connectivity matrix in multiple iterations until the N+M output 

vector of two successive interactions shows extremely small differences (signifying a 

stable settling of the integration phase).  Sentences that are more difficult to comprehend 

would presumably require more cycles to settle.  These dynamic processes have testable 

implications for psychological data.  Reading times should be correlated with the number 

of cycles during integration.  Recall of a node should be correlated with the number of 

relevant sentences and cycles of activation.  Inferences should be encoded to the extent 

that they are activated and survive the integration phase.  Kintsch (1998) summarizes 

substantial empirical evidence that supports these and other predictions from the CI 

model. 

One weakness of the CI model has concerned the connectivity matrix, which 

captures the core of the language and discourse constraints.  In the early days of CI 

modeling, the researchers had to compose the weights in the connectivity matrix by hand.  

This approach falls prey to the criticism that the researchers finagled the weights to fit the 

data in an ad hoc fashion.  The obvious exit out of this loop is to generate the weights in a 

principled fashion computationally, ideally by a computer.  The field of computational 

linguistics is close to achieving such a goal.  Kintsch (1998) has used LSA to 

automatically activate concepts (near neighbors) from long-term memory that are 

associated with explicit words and to generate weights that connect the N+M nodes.  

Syntactic parsers can be used to compute weights by virtue of structural proximity.  One 
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technical limitation that researchers are facing is that there is no reliable mechanism for 

translating language to propositions, an important functional unit in the CI model.  One of 

the frontiers of the CI model is to identify principled automated mechanisms for 

generating the weights in the connectivity matrices and initial activation values of nodes 

during sentence comprehension.  

Two-party Dialogue  

 Discourse analysts have identified dialogue patterns in different types (registers) 

of two-party dialogue.  Some patterns are context-free in the sense that they occur in most 

conversational registers.  Context-free patterns include the adjacency pairs in two party 

dialogue identified by Schegloff and Sachs (1973), such as [question  answer] and 

[offer  {acceptance/refusal}].  Another ubiquitous pattern is an embedded counter-

clarification question (Schober & Conrad, 1997), as illustrated below, in the context of a 

survey interview. 

Person 1 (survey interviewer): How many pets are in your home?  

Person 2 (interviewee): Should I include fish? 

Person 1:  Only include mammals and birds. 

Person 2: Okay, I have 4 pets. 

The embedded question is of course constrained by the knowledge state of person 2, 

namely the uncertainty about what constitutes a pet.  Another dialogue pattern that is 

frequent in classrooms is the [Initiate  Response - Evaluation] sequence (Sinclair & 

Coulthard, 1975), or more specifically the [Question  Answer  Feedback] sequence.  

Teacher:  What’s 6 X 9? (Initiation, Question) 

Student: 54 (Response, Answer) 
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Teach: Very good. (Evaluation, Feedback) 

In tutorial dialogue, this sequence is expanded into the 5-step tutoring frame introduced 

by Graesser and Clark (1994).   

Teacher:  Why is it warmer in the summer than the winter here? (Question) 

Student: The earth is closer to the sun? (Answer) 

Teacher: I don’t think so. (Short Feedback) 

Teacher & Student: <Collaborative multi-turn exchange to improve answer> 

Teacher: Do you understand? (Comprehension gauging question) 

Student: Yeah.    

One reason why tutoring is better than classroom instruction is attributable to step 4, 

where the student and teacher have a collaborative exchange that scaffolds explanatory 

reasoning   

Representing regularities in dialogue 

Discourse analysts have documented discourse patterns such as these that occur in 

different discourse registers. In order to make some progress, they typically segment the 

conversations into speech act units and assign each unit to a speech act category.  For 

example, D’Andrade and Wish (1985) have developed a system that is both theoretically 

grounded and that trained judges can reliably use.  Their categories include: question (Q), 

reply to question (RQ), assertion (A), directive (D), indirect directive (ID), expressive 

evaluation (E), short verbal response (R, including back channel feedback , e.g., uh huh), 

and nonverbal response (N, such as head nod).  There has been an ongoing effort to 

improve the categorization (tagging) of dialogue acts in the Discourse Resource Initiative 

(Core, Ishizaki, Moore, Nakatani, et al., 1999). Once the speech acts are tagged, 
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sequences of these categories can be analyzed to test theoretical claims about discourse or 

to discover new patterns through machine learning inductive procedures.      

 It is convenient to represent the dialogue regularities by either a set of production 

rules, a finite state automata, or a state transition network.  The number of constraints in 

the condition slots of the production rules is a rough index of the extent to which the rules 

are context sensitive versus context free.  Some researchers believe there are a large 

number of conceptual and pragmatic constraints that must be in place before a speech act 

can be classified in a particular category.  A smooth dialogue with a conversational 

partner may be unlikely without the system having internal representations of the 

knowledge, beliefs, goals, intentions, plans, norms, values, and other cognitive 

representations of speech participants (Allen, 1995).  Consider, for example, a symbolic 

structure of the speech act that is functionally a request.   

REQUEST (S, H, ACT)   

[Meaning the speaker requests the hearer to perform an action]   

Constraints: Speaker(S) Λ Hearer (H) Λ ACT(A) Λ  

H is agent of ACT 

Precondition:  WANT (S, ACT (H))    

[Meaning the speaker wants the hearer to do the action] 

Effect: WANT (H, ACTION (H))   

[Meaning the hearer wants to do the action after the request] 

BELIEVE (H,WANT(S (ACT(H)))  

[The hearer believes the speaker wants the hearer to do the action]  
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A speech act allegedly does not function as a request if the speaker does not want action 

A to occur, and is ineffective if the listener does not realize the speaker wants A.   

The process of reliably reconstructing these knowledge states is of course a 

challenge computationally.  Some progress is being made by statistical algorithms that 

induce patterns from large corpora of speech samples in particular applications, such as 

dialogues about train or airline schedules, but a general purpose pattern recognizer of 

knowledge, goals, and plans is not in the immediate technological horizon (Jurafsky & 

Martin, 2000).  There must be a close alignment in the common ground (shared 

knowledge) between the two participants in the dialogue before there can be a reliable 

recognition of the other’s knowledge, goals, and plans, but the process of achieving such 

an alignment is under debate (Clark, 1996; Pickering & Garrod, 2004).    

Computer simulation of dialogue 

Weizenbaum’s (1966) Eliza program was the first conversational system that was 

reasonably successful, popular, and widely used.  Eliza simulated a Rogerian client-

centered psychotherapist, as illustrated in the conversation below.   

Patient:  You are like my father in some ways. 

ELIZA: How am I like your father?   

Patient:  You are very aggressive but I think you don’t want me to notice that. 

ELIZA: What makes you think I am aggressive? 

Patient:  You always argue with me. 

ELIZA: Why do you think I argue with you? 

Like a typical Rogerian therapist, Eliza tried to get the patient to do the talking by asking 

the patient questions about the patient’s verbal contributions.  Eliza turned the patient’s 
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assertions into therapist’s questions by simple syntactic transformational rules.  That is, 

Eliza detected keywords and word combinations that matched production rules, which in 

turn generated Eliza’s responses.  The only intelligence in Eliza was the stimulus-

response knowledge captured in production rules that operate on keywords and that 

perform syntactic transformations.  What was so remarkable about Eliza is that 100-200 

simple production rules could very often create an illusion of comprehension, even 

though Eliza had minimal depth and common ground with the user.   

Efforts to build conversational systems continued in the 70’s and early 80’s.  

Schank and his colleagues built computer models of natural language understanding and 

rudimentary dialogue about scripted activities (Schank & Reisbeck, 1982).  SHRDLU 

manipulated simple objects in a blocks world in response to a user’s command 

(Winograd, 1972).  By the mid-1980’s, however, researchers were convinced that the 

prospect of building a good conversational system was implausible. The chief challenges 

were (a) the inherent complexities of natural language processing, (b) the unconstrained, 

open-ended nature of world knowledge, and (c) the lack of research on lengthy threads of 

connected discourse.  This pessimistic picture was arguably premature because there have 

been a sufficient number of technical advances in the last decade for researchers to revisit 

the vision of building dialogue systems. The current conversational systems are not 

perfect, but they go a long way in creating the impression that the system is 

comprehending the user and responding appropriately.   

 A plan-based architecture is routinely adopted in current systems with dialogue 

modeling in computational linguistics, such as TRINDI (Larsson & Traum, 2000) and 

COLLAGEN (Rich, Sidner, & Lesh, 2001).  The TRINDI project assumes the existence 
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of an information state, that is, a rather detailed record of the current state of the dialogue.  

The information state is sufficiently detailed at multiple levels of language and planning 

to make the particular dialogue distinct and to support the successful continuation of the 

dialogue.  The information state approach is general enough to accommodate dialogue 

systems that range from the simplest finite-state script to the most complex Belief-Desire-

Intention (BDI) model.  The information state theory of dialogue modeling requires: (1) a 

description of the components of the information state, (2) formal representations of these 

components, (3) external dialogue from the human/other which triggers the update of the 

information state, (4) internal update rules which select dialogue moves and update the 

information state, and (5) a control strategy for selecting update rules to apply, given a 

particular information state.  The COLLAGEN project (Rich et al., 2001) is very similar 

but contrasts three kinds of structure: linguistic, intentional, and attentional.  Linguistic 

structure captures the sequence of utterances, whereas intentional structure captures the 

conversation goals, and the attentional state is the focus of attention on salient elements 

of the discourse at a particular point.  Existing implementations of COLLAGEN are an 

approximation of an underlying discourse theory of Grosz and Sidner (1986). 

 Natural language dialogue (NLD) facilities are expected to do a reasonable job in 

some conversational contexts, but not others.  It depends on the subject matter, the 

knowledge of the learner, the expected depth of comprehension, and the expected 

sophistication of the dialogue strategies.  A NLD facility is progressively more feasible 

when more of the following conditions are met.  

1) An imperfect system is useful. 

2) Expected precision of the information is modest. 
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3) Content is verbal content rather than mathematical.   

4) The user has low or modest subject matter knowledge. 

5) Idiomatic expressions are rare. 

6) The computer doesn’t need to construct a novel mental model.  

7) The computer anticipates what users will say. 

8) There are simple pragmatic ground rules. 

9) The computer has many options and a license to redirect the dialogue by changing 

topics, asking questions, expressing generic dialogue moves (Uh huh, Anything 

else?, I don’t follow, That’s interesting).  

Tutorial dialogue systems 

 Tutoring environments are feasible NLD applications because they meet most or 

all of the above nine conditions, particularly when the subject matter is verbal.  It is 

noteworthy that even human tutors are not able to monitor the knowledge of students at a 

precise fine-grained level because much of what students express is vague, 

underspecified, ambiguous, fragmentary, and error-ridden (Fox, 1993; Graesser & 

Person, 1994).  There are potential costs if a tutor attempted to do so.  For example, it is 

often more worthwhile for the tutor to help build new correct knowledge than to become 

bogged down in dissecting and correcting each of the learner’s knowledge deficits. 

Tutors do have an approximate sense of what a student knows and this appears to be 

sufficient to provide productive dialogue moves that lead to significant learning gains in 

the student (Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001; Graesser & Person, 1994).  

 Researchers have developed approximately a half dozen intelligent tutoring 

systems with dialogue in natural language.  These systems help college students generate 
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cognitive explanations and patterns of knowledge-based reasoning when solving 

particular problems (Moore, 1995).  AutoTutor (Graesser, Olney, Haynes, & Chipman, 

2005) was developed for introductory computer literacy and Newtonian physics. 

Why/Atlas (VanLehn, Jordan, et al., 2002) also has students learn about conceptual 

physics by a coach that helps them build explanations. The Mission Rehearsal system 

(Gratch et al., 2002) helps Army personnel interact in a virtual war scenario. iSTART 

helps students learn reading strategies by providing students with feedback concerning 

their explanations of sentences in text (McNamara, Levinstein, & Boonthum, 2004).   

 Tutorial NLD appears to be more feasible to the extent that the tutoring strategies 

follow what most human tutors do, as opposed to strategies that are highly sophisticated 

(Graesser & Person, 1994). Most human tutors anticipate particular correct answers 

(called expectations) and particular misunderstandings (misconceptions) when they ask 

the learners questions and trace the learner’s reasoning. As the learner articulates the 

answer or solves the problem, this content is constantly being compared with the 

expectations and misconceptions.  The tutor responds adaptively and appropriately when 

particular expectations or misconceptions are expressed. This tutoring mechanism is 

called expectation and misconception tailored dialogue (EMT dialogue), the mechanism 

incorporated in AutoTutor (Graesser et al., 2005). The EMT dialogue moves of most 

human tutors are not particularly sophisticated from the standpoint of ideal tutoring 

strategies that have been proposed in the fields of education and artificial intelligence.  

For example, analyses of human tutoring have revealed that tutors rarely implement 

intelligent pedagogical techniques such as bona fide Socratic tutoring strategies, 

modeling-scaffolding-fading, reciprocal teaching, building on prerequisites, and 
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diagnosis/remediation of deep misconceptions.  Instead, tutors tend to coach students in 

constructing explanations according to the EMT dialogue patterns. Fortunately, the EMT 

dialogue strategy is substantially easier to implement computationally than are the 

sophisticated tutoring strategies.  

 AutoTutor (Graesser et al., 2005) attempts to hold a mixed-initiative dialogue 

with the student during tutoring.  AutoTutor segments the student’s turns into speech act 

units and then assigns these units into categories, such as Assertion, Short Answer, 

Metacognition (I don’t follow?), Metacommunication (What did you say?), Definition 

Question (What does X mean?) and so on.  There are approximately 20 categories of 

student speech acts; 16 of these are different categories of student questions.  AutoTutor 

attempts to accommodate any student question, assertion, comment, or extraneous speech 

act.  AutoTutor needs to produce language in addition to comprehending language.  Each 

turn of AutoTutor requires the generation of one or more dialogue moves that either 

adaptively respond to what the student just expressed or that advance the conversation in 

a constructive fashion that answers the main question or problem.  The dialogue moves 

within a turn are connected by dialogue markers (Okay, Next consider…).  Some 

dialogue moves are very responsive to the student’s preceding turn, such as the short 

feedback (positive, neutral, versus negative), the answers to student questions, and 

corrections of student misconceptions.  Other dialogue moves push the dialogue forward 

in an attempt to cover the expectations in an answer to the main question.  These 

forward-directed dialogue moves include Pumps (e.g., Tell me more, What else?), Hints, 

Prompts for specific words or phrases, and Assertions.  The responsive and forward-

directed dialogue moves together provide a mixed-initiative dialogue in which both 
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parties of the conversation exert an influence over the conversation.  These are not 

scripted conversations, but rather are dynamically emerging exchanges.    

AutoTutor and human tutors attempt to get the learner to fill in words and 

propositions in the expectations.  For example, suppose an answer requires the 

expectation: the force of impact will cause the car to experience a large forward 

acceleration.  The following family of prompts is available to encourage the student to 

articulate particular content words in the expectation: 

1. The impact will cause the car to experience a forward _____?  

2. The impact will cause the car to experience a large acceleration in what direction?   

3. The impact will cause the car to experience a forward acceleration with a 

magnitude that is very  _____? 

4. The car will experience a large forward acceleration after the force of ______? 

5. The car will experience a large forward acceleration from the impact’s ______? 

6. What experiences a large forward acceleration?   

The particular prompts that are selected are those that fill in missing information if 

answered successfully.  That is, the dialogue management component adaptively selects 

hints and prompts in an attempt to achieve pattern completion.  The expectation is 

covered when enough of the ideas underlying the content words in the expectation are 

articulated by the student so that the expectation is sufficiently covered.  LSA and other 

semantic analyzers determine whether the student has sufficiently articulated each 

particular expectation.    

 Evaluations of AutoTutor have been encouraging in several respects.  First, 

AutoTutor is useful because students learn about computer literacy and physics much 
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better than reading a textbook for an equivalent amount of time, and nearly as well as an 

expert human tutor.  Second, the conversations of AutoTutor are surprisingly smooth 

because bystanders in a bystander Turing test cannot tell whether a randomly selected 

turn was generated by AutoTutor or a human tutor.  Third, the LSA based judgments of 

whether a sentence-like expectation was covered in the dialogue is approximately as 

accurate as a graduate research assistant.  These successes are surprising because 

AutoTutor does not really understand the learner at a deep level, with a fine-grained 

alignment of knowledge states in a common ground. This raises questions about the 

notion of common ground.  That is, do participants in a dialogue really need to know a 

great deal of what each other knows for successful conversation to proceed?   

Closing Comments 

 This chapter has reviewed progress that has been made in developing 

computational models of text comprehension and two-party dialogue.  Sufficient progress 

has been made in the fields of discourse processes, cognitive science, and computational 

linguistics to build detailed models of how discourse is comprehended and produced at 

multiple levels.  Many of these levels are sufficiently well specified to automate them on 

computer.  Unlike 10-20 years ago, we have reasonable solutions to handling problems of 

world knowledge, the vagueness and underspecification of natural language, and the 

management of longer threads of discourse.  The computational models have evolved to 

the point of building useful computer technologies, such as essay graders, automated 

conversational tutors, question answering systems, and text analyzers that go well beyond 

readability formulae.  It is hard to imagine what breakthroughs will emerge during the 

next 10 years.  Some of the difficult challenges for the future, which we could not cover 
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in this chapter, will be computational models that perform automatic text generation, 

discourse-sensitive speech recognition, speech generation with appropriate intonation, 

and management of dialogue among three or more discourse participants.      
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