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Abstract. Self-explanations (SE) are an effective method to promote learning 
because they can help students identify gaps and inconsistencies in their 
knowledge and revise their faulty mental models. Given this potential, it is 
beneficial for intelligent tutoring systems (ITS) to promote SEs and adaptively 
respond based on SE quality. We developed and evaluated classification models 
using combinations of SE content (e.g., inverse weighted word-overlap) and 
contextual cues (e.g., SE response time, topic being discussed). SEs were coded 
based on correctness and presence of different types of errors. We achieved 
some success at classifying SE quality using SE content and context. For 
correct vs. incorrect discrimination, context-based features were more effective, 
whereas content-based features were more effective when classifying different 
types of errors. Implications for automatic assessment of learner SEs by ITSs 
are discussed. 
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1   Introduction 

Learning is a complex process that involves both the acquisition of new knowledge 
and integration of new content with existing knowledge. This task can be especially 
difficult when learners' mental models are rife with gaps, inconsistencies, and 
misconceptions. One method to facilitate the learning process is to have instructors 
provide explanations and guidance. Another method is to allow learners to construct 
and refine their own mental models. The latter method represents a more active form 
of knowledge construction. This type of active knowledge construction, in which 
learners are encouraged to engage in a form of self-instruction [1], can be contrasted 
with more shallow learning that involves the mere accumulation of facts [2-3].  

Self-instruction can be completed through a number of learning activities; one such 
activity is self-explanation. Self-explanations (SE) are a representation of the learner’s 
current knowledge about a concept and involve making inferences as well as 
integrating new information into existing knowledge structures [4]. SEs can also 



facilitate learning by causing learners to realize where gaps or inconsistencies exist in 
their knowledge [5-6]. The impact of SEs on learning can be especially strong when 
learners are required to apply skills to new situations [5, 7].  

The value of SEs as a means to diagnose learner knowledge and facilitate learning 
has been acknowledged for some time. Many studies have taken advantage of the SE 
effect (e.g., [5, 8, 9]). For example, Chi et al. [5] had learners study example problems 
on Newtonian physics and engage in a talk-aloud while studying. They found that 
higher achieving learners generated SEs at each step of the example problem while 
working to create a more refined understanding of the concept. Less successful 
learners, on the other hand, did not generate their own SEs while learning. 

 The benefits of SEs have also been studied in the context of intelligent tutoring 
systems (ITS). Many ITSs incorporate SEs as part of the learning process and some 
even train learners to become more adept self-explainers [6-7, 10-12]. iSTART, for 
example, is an ITS that provides learners with SE and reading strategy training [12]. 
By providing learners with examples of high quality SEs, practice generating SEs, 
and additional reading strategies, iSTART is able to increase learners’ reading 
comprehension skills [13]. 

In addition to promoting SE use and training learners to generate higher quality 
SEs, ITSs must also be capable of evaluating the quality of learner-generated SEs. If 
an ITS can provide learners with opportunities to self-explain and automatically 
assesses the quality of their SEs, the ITS can adaptively respond to any gaps in the 
learner’s knowledge and begin to correct problematic misconceptions.  

The process of understanding natural language contributions from learners, 
however, is not a trivial task because the responses are often short, conversational, 
fragmented, and syntactically incorrect. In one study, Williams and D’Mello [14] 
used linguistic properties to assess the quality of learner responses during expert 
human tutoring sessions. The Linguistic Inquiry Word Count [15] was used to classify 
answers as correct, partially-correct, vague, or error-ridden. Although this approach 
did not use any content-dependent words, they were able to correctly classify 45.2% 
of learner responses. 

Other studies have used a more content-dependent approach for assessing learner 
contributions. Litman, Moore, Dzikovska, and Farrow [16] used content word 
matching to analyze corpora from tutoring sessions with an ITS and human tutors. 
Use of a domain-specific glossary yielded some success; however, approximately half 
of the content words in learner responses were misclassified. In a series of studies, 
Graesser, Penumatsa, Ventura, Cai, and Hu [17] made use of Latent Semantic 
Analysis (LSA) [18] to model learner knowledge during interactions with an ITS. 
LSA is a method to semantically compare two texts using a bag of words approach 
and dimensionality reduction techniques. By comparing learner responses to 
expectations (ideal responses) and common misconceptions, they were able to model 
learner knowledge at a level that was comparable to unskilled human tutors.  

Research on natural language understanding (NLU) techniques to assess learner 
responses has also revealed that a combination of algorithms may be an effective 
method for diagnosing learner knowledge. Aleven, Popescu, and Koedinger [19] used 
the combination of a geometry knowledge base (e.g., keywords, ideal responses) and 
a statistical text classifier (NaïveBayes). The knowledge base incorporated 
hierarchical ordering for comparisons of learner responses to correct or partially-



correct example responses. When only the knowledge base was used to discriminate 
between correct and incorrect learner responses, 59.5% of responses were correctly 
classified [20]. However, when the classification model included both the knowledge 
base and statistical classifier, classification improved to 61% [21]. The negligible 
increase, when the statistical classifier was included (59.5% vs. 61%), was attributed 
to the large number of potential classifications for each SE (167 labels). When 
semantic similarity between labels, or types of error-ridden answers, was taken into 
account and reduced the number of potential labels, accuracy greatly increased to 
81%.  

Rus, McCarthy, Lintean, Graesser, and McNamara [22] examined seven 
algorithms to assess the quality of learner SEs from iSTART interactions. iSTART 
presents learners with a text and then asks them to explain the text in their own words. 
The algorithms were either word-based, syntactic, or a combination of word and 
syntactic information. Word-based algorithms assessed word-overlap between learner 
SEs and the original text. Seventy-four percent of paraphrase SEs were correctly 
classified via a combination of the entailment index [23], synonymy index, word-
overlap, and LSA (see [22] for details).  

Past research on automatic classification of learner contributions has focused on 
the response content (i.e., the words in the response), while context from the learning 
session has largely been ignored. In the present paper we attempt to expand upon 
these past results by augmenting a semantic analysis of the response content with 
information about the context surrounding the response. Similar to past research, we 
test a model that uses a weighted word-overlap algorithm as the predictive feature (SE 
Content model). We build on past research by testing a Context model that 
incorporates features of the response characteristics (e.g., SE response time) and 
larger learning context (e.g., order of topic presentation, prior performance in the 
learning session). We compare the individual models to a Combined model (Content 
+ Context). Finally, taking a somewhat different approach, we tested a Word-Based 
model that exclusively relies on the words in SEs as predictive features without a 
knowledge-based model of correct and incorrect answers. The models were tested on 
a corpus of learner SEs collected from a previous study involving tutorial sessions on 
scientific reasoning topics. 

2   Method 

2.1   Participants 

Participants were 76 undergraduate students from a mid-south university in the US 
who participated for course credit. Participants completed four learning sessions, one 
on each of the scientific reasoning topics (experimenter bias, control group, random 
assignment, replication). Order of topics was counterbalanced across participants.  
 
 



2.2   Learning Sessions 

The learning sessions consisted of the human learners engaging in a trialogue with 
two animated pedagogical agents (tutor agent and peer student agent) while learning 
about scientific reasoning topics [24]. The trialogues consisted of learners discussing 
the scientific merits of sample research studies with the tutor and peer agents. All 
studies had one subtle flaw and the learner had to identify this flaw by reflecting and 
deliberating on the quality of the methodologies of the studies. 

The excerpt in Table 1 is an example trialogue between the two agents and the 
human learner. In this excerpt, the tutor agent (Dr. Williams) and the peer agent 
(Chris) are discussing a flawed study with the human learner (Bob). The study is 
flawed because the replication study used the same population as the original study. 

Table 1. Excerpt of trialogue  
      

Turn Speaker Dialogue Move 
      
   

A study showed that people who drank non-alcoholic beer can feel drunk. A professor ran 
this study with his class. He randomly assigned 50 students to drink the real beer and 50 the 
non-alcoholic beer. The professor was skeptical, so he ran a replication study two weeks 
later with the same method and same class. He found the same results again. So he 
concluded that people can feel just as drunk from non-alcoholic beer. <Research Study> 
   

1 Dr. 
Williams 

I think we all need to go over the experiment some more. <Advance 
dialogue>  

2 Dr. 
Williams 

Alright, so I think that the real problem here is with the second 
experiment. <Assert information> 

3 Chris I disagree with you, Dr. Williams. I think the replication was done right. 
<Assert information> 

4 Dr. 
Williams 

Bob, was this a good or bad replication? Please type good or bad. 
<Forced-choice question> 

5 Bob bad <Response> 
6 Dr. 

Williams 
Tell me more about your thoughts on this Bob. <Pump for SE> 

7 Bob How can feel drunk drinking a non-alcoholic drink unless you had 
a alcoholic drink before taking the experiment. Its faulty and 
doesn't make sense. <Student SE> 

      

 
Each learning session began with learners reading the research study and then 

beginning a trialogue with the agents. The discussion involved five trials. All trials 
consisted of the tutor (turn 2) and peer (turn 3) agents asserting their opinions, 
prompting the learner to intervene (turn 4), and obtaining the learner’s response (turn 
5). Learner responses were either correct or incorrect. Trials 3 and 4 also included 
pumps (turn 6) that required learner SEs (turn 7). Learners did not receive feedback 
on SE quality; the agents simply acknowledged learners’ contributions (e.g., 
“Alright,” “Okay”). This cycle was repeated in each trial, with each trial becoming 
more specific about the scientific merits of the study. The present paper will focus on 
Trials 3 and 4 because learners were asked to self-explain during these trials.  



2.3   Procedure 

Learners were tested individually over a two-hour session. First, learners signed an 
informed consent and completed the pretest. Next, learners read a short introduction 
on research methods. Learners then completed four learning sessions, one on each 
scientific reasoning topic. Finally, learners completed the posttest and were fully 
debriefed. Pretest and posttest data is not relevant to the present analyses and will not 
be discussed any further. 

2.4   Self-Explanation Coding 

A total of 608 learner SEs were obtained from the learning sessions. Two human-
raters coded the SEs as correct, partially-correct, or incorrect. A subset of the corpus 
was first coded to compute reliability (kappa = .842). The corpus was then divided 
evenly between the raters for coding. For the current analyses, partially-correct and 
incorrect SEs were collapsed into one category (incorrect) because there were very 
few instances of partially-correct SEs (8.72%). This yielded 36% correct responses 
and 64% incorrect responses. 

Incorrect SEs were further coded for types of error-ridden reasoning. Learner SEs 
could be rated as Correct, Error Type 1, Error Type 2, Error Type 3, Unclassified, or 
Frozen Expression. Incorrect learner SEs that did not fit into one of the error type 
categories were grouped as Unclassified. Frozen expressions, SEs unrelated to the 
topic, were not included in the current analyses because a speech act classifier that 
can accurately identify these utterances has already been developed [25].  

Table 2 shows an example of a correct response, different error types, and a frozen 
expression. Error types were unique to each scientific reasoning topic and trial. Errors 
could vary from focusing on superficial features of the study rather than 
methodological issues (see Error Type 2) to complete misunderstandings of the 
concept being discussed (see Error Type 1). 

Table 2. Examples of SE response types for Trial 3 of the replication topic 
    

Response Type Example 
    

Correct Answer It was bad since the study used the same people to replicate the study. 
Different people should have been used so the accuracy of the data 
could have been confirmed more firmly. 

  
Error Type 1 I think that it was a good replication of the first study; however, I do 

not think that the first study was executed properly. 
Error Type 2 How can feel drunk drinking a non-alcoholic drink unless you had a 

alcoholic drink before. It doesn't make sense. 
Error Type 3 The professor was careful to conduct random assignment. That helps 

to make it a good replication. And he used the same people. 
Unclassified It was conducted well but the longevity of the study could not make it 

very accurate. 
Frozen Expression I don’t know. 
    



2.5   Semantic Matching  

In order to evaluate the semantic quality of learner SEs, we first needed to create 
expected responses and expected errors. Prototypical correct responses and 
prototypical erroneous responses (for each error type) were created by a content 
expert (see Table 2 for an example). Prototypical correct and erroneous responses 
were unique to each of the eight individual questions (4 topics x 2 trials).  

Learner SEs were compared to prototypical correct and erroneous responses using 
an inverse word frequency weighted overlap (IWFWO) algorithm. The IWFWO 
algorithm is a word-matching algorithm in which each overlapped word is weighted 
on a scale from 0 to 1, relative to its inverse frequency in the English language using 
the CELEX corpus [26]. The inverse frequency allows for higher weighting of lower 
frequency, more contextually relevant words (e.g., replication, bias), while higher 
frequency words (e.g., and, but) are given a lower weighting. Comparisons resulted in 
a match score between 0 and 1 (1 = perfect similarity). 

3   Results and Discussion 

3.1   Content, Context, and Combined Models 

We tested three models to determine which SE features were most diagnostic of SE 
quality. The Content Model included the IWFWO match score (either to the 
prototypical correct or error type SE based on the classification task) and the number 
of words in the SE. The Context Model included SE response time, performance 
(correct or incorrect) and response time on the forced-choice question prior to the SE 
(see turn 4 in Table 1), and the order of topic presentation (e.g., first, second). These 
contextual features were selected because they are already logged by the learning 
environment and would not require additional processing for future SE classification. 
Finally, there was also a Combined model, which combined features from the two 
individual models. 

Four classification algorithms from WEKA [27] were used to build and evaluate 
the models: NaïveBayes, IBk (nearest neighbor with k = 10), j48, and LogitBoost. The 
majority class algorithm (ZeroR) that classifies all SEs to the most prevalent group 
was used as the baseline comparison. Each algorithm was evaluated using 10-fold 
cross-validation. Two separate classification tasks were performed. The first task 
consisted of making a simple correct vs. incorrect discrimination, while the second 
task performed a fine-grained discrimination in terms of specific error types.  

SEs were separated into eight groups based on scientific reasoning topic and trial. 
After removing frozen expression responses, there was an average of 71.9 responses 
per group (SD = 2.42; Range 69 to 75). The algorithms were evaluated on each SE 
group for both classification tasks. For each SE group the best algorithm (i.e., one out 
of the four algorithms that yielded the best performance) was selected. The best 
classification results were averaged across SE groups and constituted the Content, 
Context, and Combined models. Table 3 shows the results obtained for each 
classification task averaged across the eight groups.   



Table 3. Mean (SD) classification performance across groups 

 Correct-Incorrect  Error Type 
Model Accuracy (%) Kappa  Accuracy (%) Kappa 

Baseline 64.6 (9.45)  .000 (.000)  43.3 (6.93) .000 (.000) 
      
Content 69.5 (6.74) .248 (.080)  67.6 (4.44) .501 (.108) 
Context 74.0 (4.08) .335 (.160)  50.3 (8.44) .231 (.095) 
      

Combined 74.3 (3.92) .347 (.160)  67.4 (6.54) .510 (.103) 
 

We note that the Context model (74.0%) was the most successful for segregating 
correct from incorrect responses. Both the Content, t(7) = 2.40, p < .05, and Context 
models, t(7) = 4.29, p < .01, performed significantly better than the Baseline model. 
The Context model also significantly outperformed the Content model for correct-
incorrect discriminations, t(7) = 2.39, p < .05. Both individual models outperformed 
the Baseline model for error type discriminations (Content: t(7) = 8.02, p < .01; 
Context: t(7) = 2.69, p < .05). However, it was the Content model that performed best 
for error discrimination (67.6%). Interestingly, the Content model was twice as more 
effective for error type classifications than the Context model, t(7) = 4.70, p < .01. 
Indeed, these models were differentially effective for different classification tasks. 

When comparing correct and incorrect SEs, we found that learners with correct 
SEs took longer to self-explain, t(14) = 3.14, p = .01, and responded more accurately 
to the forced-choice question prior to self-explaining, t(14) = 2.30, p < .05. This 
suggests that learners who responded correctly took more time to thoughtfully 
construct a response. For erroneous SEs, error types only differed on match to the 
prototypical erroneous responses, F(3) = 20.2, p < .01, which is what could be 
expected. Furthermore, SEs that were grouped as unclassified had lower match scores 
to the prototypical erroneous responses.  

Comparisons of the Combined model to the individual models were also quite 
informative. Combined models for both discrimination tasks outperformed the 
Baseline models (correct-incorrect: t(7) = 2.86, p < .05; error type: t(7) = 8.26, p < 
.01). However, the Combined model did not yield any noticeable improvements over 
the best performing individual model for either the correct vs. incorrect or error 
discrimination task (p’s > .05). The negligible improvement by the Combined models 
suggests that it may be beneficial for systems to not conduct a full classification 
model initially, but rather allot these resources only when needed. For example, if an 
SE is classified as correct, it is not necessary to conduct a full classification model 
and analyze the actual content of the SE. 

3.2   Word-Based Models 

We also attempted to classify SEs with only the words in responses as features. This 
was accomplished using the StringToWordVector package in WEKA to transform 
text strings (words) into numerical input using tf-idf (term frequency-inverse 



document frequency) weighting. The tf-idf weighting allows less frequent, more 
content-rich words to have higher weightings.  

The same four classifiers were used to train the models and they were tested with 
ten-fold cross-validation. As in the previous analyses, SEs were separated by 
scientific reasoning topic and trial for classification. The best classifier for each 
individual SE group was then selected. The average classification accuracy (across 
the eight groups) for the correct vs. incorrect was 71.1% (SD = 8.45) with a kappa of 
.282 (SD = .178). For error discrimination, the average accuracy was 58.1% (SD = 
9.30) with a kappa of .352 (SD = .119). The word-based models performed 
significantly better than the Baseline model for both discrimination tasks (correct vs. 
incorrect: t(7) = 2.10, p < .1; error type: t(7) = 5.43, p < .01).  

These results suggest that while it is possible to classify SEs on the basis of words 
alone, the resultant models were less effective than the Content model (67.6% 
accuracy) for error classification. However, the word-based models were 
approximately equivalent to the Context model (74% accuracy) for correct vs. 
incorrect discrimination. This suggests that for fine-grained detection of learner 
errors, a knowledge-based approach of SE content is more appropriate [19-21]. 

4   Conclusion 

Several ITSs have incorporated the assessment of learner natural language responses 
using NLU techniques such as LSA, word-overlap, and other linguistic features. We 
tested which response features (content, context, combination) were most effective at 
accurately assessing SE quality, both in terms of correct vs. incorrect discriminations 
and classifying different error types. We were able to achieve moderate success at SE 
classification with models that included either the response content or response 
context, but there were no improvements when the models were combined.  

Previous work on the classification of learner contributions has focused on 
response content [16-17, 22]. We expanded these previous efforts by also 
incorporating features of the context. We found that the effectiveness of content- and 
context-based features differed depending on the discrimination task. More 
specifically, the context-based model was sufficient to make correct vs. incorrect 
discriminations but the content-based model was needed for more specific error type 
classification. An effective approach for classification systems, then, would be to 
initially use context-based features to determine whether an SE is correct or incorrect. 
If the SE is classified as incorrect, the content features can then be used to make a 
finer-grain distinction between types of erroneous responses.  

One interesting and informative finding was that we were relatively successful at 
making a general correct vs. incorrect SE classification without even considering the 
actual SE response. The success of this context model, which incorporated the 
learner’s prior performance and other informative parameters, suggests that it can be 
used to make predictive assessments of SE quality. This information can be used to 
decide the optimal time to ask learners to provide an SE. However, this conclusion 
should be taken with a modicum of caution because further empirical testing of this 



classification scheme will be necessary to determine how frequently SEs are 
misclassified and the impact this misclassification has on learning.  

Automatic classification of SE quality and error-ridden reasoning has important 
implications for building adaptive and effective ITSs. Through the use of readily 
available context features as well as word-overlap comparisons, ITSs can use SEs to 
create a more accurate model of learner knowledge. ITSs can then use this 
information to provide individually tailored scaffolding based on errors identified in 
learner-generated explanations. This type of adaptive scaffolding will allow ITSs to 
more efficiently and effectively help learners to reach deeper levels of understanding. 
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